Optical Theorem Formulation of Low Energy Nuclear Reaction

Yeong E. Kim
Purdue Nuclear and Many-Body Theory Group
Department of Physics and Center for Sensing Science and Technology
Purdue University, West Lafayette, Indiana 47907, U.S.A.
E-mail: yekim@physics.purdue.edu

Optical theorem formulation of low-energy nuclear reaction [1,2] will be described for 2-body and 3-body reactions. Analytical formulae obtained for the cross-section \(\sigma(E) \) exhibit explicitly the energy and charge dependences of \(\sigma(E) \) and may provide a better physical understanding of anomalous low-energy enhancement of \(\sigma(E) \) observed in deuterated metals [3,4] and also in nuclear fusion reactions relevant for the primodal nucleosynthesis and stellar evolution. Application to 3D fusion observed by Kasagi et al. [5] (“Kasagi effect”) will be described. Effects of halo nuclear states on the anomalous low-energy enhancement of \(\sigma(E) \) are also discussed. The formulation can also be applied to sub-barrier heavy-ion fusion reactions.