Cluster formation in low density matter

Akira Ono

Tohoku University

ICNT2013, July 15 - August 9, 2013.

- Clusters in medium and in heavy-ion collisions
- AMD with cluster correlations
- Clusters, collision dynamics and symmetry energy

Large fraction of clusters in head-on collisions

Akira Ono (Tohoku University)

ICNT2013 2 / 36

Week1 discussions by Hermann Wolter

0 < T < 100 MeV

 $0 \le Y_{-} \le 0.6$

Very low density matter in Astrophysics

In Supernova simulations the Equation-of-State appears for a wide range of Densities, temperatures and asymmetries.

In particular also at very low densities, where correlations become important.

Various commonly used EoS's treat this in a phenomenological manner (e.g. Lattimer,Swesty; Shen, Toki; Shen, Horowitz, Teige)) There exists an exact low density limit, the Virial Theorem (Horowitz, Schwenk)

Attempted Improvements: (S.Typel, G. Röpke, T. Klähn, D. Blaschke, HHW, PRC 81, 015803 (2010))

medium effects on light clusters, quantum statistical approach

description of low to high density clustered matter in dens.-dep. rel. mean field model (DD-RMF)

a tin'i

Stellar Matter (with electrons and with clusters) without (-----) and with Coulomb contrib removed (-----)

Typel, Röcke, Klähn, Blaschi

Wolter PRC81 015803(2010)

Akira Ono (Tohoku University)

Cluster formation in low density matter

ICNT2013 3/36

Clusters in infinite nuclear medium

- **P** = 0: Clusters at rest (relative to medium)
- T: temperature of medium

Equation for the deuteron in medium

$$\begin{bmatrix} e(\frac{1}{2}\mathbf{P} + \mathbf{p}) + e(\frac{1}{2}\mathbf{P} - \mathbf{p}) \end{bmatrix} \tilde{\psi}(\mathbf{p})$$

+
$$\frac{1}{2} \begin{bmatrix} 1 - f(\frac{1}{2}\mathbf{P} + \mathbf{p}) - f(\frac{1}{2}\mathbf{P} - \mathbf{p}) \end{bmatrix} \int \frac{d\mathbf{p}'}{(2\pi)^3} \langle \mathbf{p} | v | \mathbf{p}' \rangle \tilde{\psi}(\mathbf{p}')$$

=
$$E \tilde{\psi}(\mathbf{p})$$

Correlated part of the two-body level density

$$D(E) = \sum_{\mathbf{P},k} g_k \delta(E - E_k) + \sum_{\mathbf{P},l} \frac{g_l}{\pi} 2\sin^2 \delta_l \frac{d\delta_l}{dE}$$

- Q. When do the cluster correlations in the continuum disappear?
- Q. What is the effect of the asymmetry δ of the medium?

Cluster put into a nucleus (AMD)

 α cluster $\approx |\alpha, \mathbf{Z}\rangle$ = four wave packets with different spins and isospins placed at the same phase space point \mathbf{Z} . (Energies are defined relative to $|^{40}$ Ca \rangle .)

$$\begin{split} E_{\alpha} &: \qquad \mathcal{A} |\alpha, \mathbf{Z}\rangle|^{40} \mathbf{Ca} \rangle \\ E_{\text{nucleon}} &: \qquad \mathcal{A} |\mathbf{Z}\rangle|^{40} \mathbf{Ca} \rangle \quad (\text{nucleon} = p \uparrow, p \downarrow, n \uparrow, n \downarrow) \\ \Delta E_{\alpha} &= E_{\alpha} - (E_{p\uparrow} + E_{p\downarrow} + E_{n\uparrow} + E_{n\downarrow}) \end{split}$$

- Due to the shell effect in a finite nucleus, $E_{nucleon} \approx E_F + \hbar \omega$ \Rightarrow Lower ΔE_{α}
- Due to the density dependence of the Skyrme force, the interaction between nucleons in the *α* cluster is weakened in the nucleus.
 - \Rightarrow Dependence on **P** or v_z .

AMD wave function

$$|\Phi(Z)\rangle = \frac{\det}{ij} \Big[\exp\Big\{ -\nu \Big(\mathbf{r}_j - \frac{\mathbf{Z}_i}{\sqrt{\nu}} \Big)^2 \Big\} \chi_{\alpha_i}(j) \Big]$$

$$\begin{split} \mathbf{Z}_{i} &= \sqrt{\nu} \mathbf{D}_{i} + \frac{i}{2\hbar} \sqrt{\nu} \mathbf{K}_{i} \\ \nu &: \text{Width parameter} = (2.5 \text{ fm})^{-2} \\ \chi_{\alpha_{i}} &: \text{Spin-isospin states} = p \uparrow, p \downarrow, n \uparrow, n \downarrow \end{split}$$

Image: A matrix

Time-dependent variational principle

$$\delta \int_{t_1}^{t_2} \frac{\langle \Phi(Z) | (i\hbar \frac{d}{dt} - H) | \Phi(Z) \rangle}{\langle \Phi(Z) | \Phi(Z) \rangle} dt = 0, \qquad \delta Z(t_1) = \delta Z(t_2) = 0$$

Equation of motion for the wave packet centroids Z

$$\frac{d}{dt}\mathbf{Z}_{i} = \{\mathbf{Z}_{i}, \mathcal{H}\}_{\mathsf{PB}} \qquad \text{or} \qquad i\hbar \sum_{j=1}^{A} \sum_{\tau = x, y, z} C_{i\sigma, j\tau} \frac{dZ_{j\tau}}{dt} = \frac{\partial \mathcal{H}}{\partial Z_{i\sigma}}$$

 $\mathcal{H} = \frac{\langle \Phi(Z) | H | \Phi(Z) \rangle}{\langle \Phi(Z) | \Phi(Z) \rangle} + (\text{c.m. correction}), \qquad H: \text{ Effective interaction (e.g. Skyrme force)}$

• Finite-range effective interaction such as Gogny force

$$v_{ij} = \sum_{k=1,2} (W_k + B_k P_\sigma - H_k P_\tau - M_k P_\sigma P_\tau) e^{-(\mathbf{r}_i - \mathbf{r}_j)^2 / a_k^2} + t_\rho (\mathbf{1} + P_\sigma) \rho(\mathbf{r}_i)^\sigma \delta(\mathbf{r}_i - \mathbf{r}_j)$$
$$\langle V \rangle = \frac{1}{2} \sum_{i=1}^A \sum_{j=1}^A \sum_{k=1}^A \sum_{l=1}^A \langle ij|v|kl - lk \rangle B_{ki}^{-1} B_{lj}^{-1} \sim A^4$$

• Skyrme force, in recent calculations.

$$\begin{aligned} v_{ij} &= t_0 (1 + x_0 P_\sigma) \delta(\mathbf{r}) + \frac{1}{2} t_1 (1 + x_1 P_\sigma) [\delta(\mathbf{r}) \mathbf{k}^2 + \mathbf{k}^2 \delta(\mathbf{r})] & \mathbf{r} = \mathbf{r}_i - \mathbf{r}_j \\ &+ t_2 (1 + x_2 P_\sigma) \mathbf{k} \cdot \delta(\mathbf{r}) \mathbf{k} + t_3 (1 + x_3 P_\sigma) [\rho(\mathbf{r}_i)]^\alpha \delta(\mathbf{r}) & \mathbf{k} = \frac{1}{2\hbar} (\mathbf{p}_i - \mathbf{p}_j) \\ &\langle V \rangle = \int \mathcal{V} \Big(\rho(\mathbf{r}), \tau(\mathbf{r}), \Delta \rho(\mathbf{r}), \mathbf{j}(\mathbf{r}) \Big) d\mathbf{r} & \sim A^2 V \\ &\rho(\mathbf{r}) = \left(\frac{2\nu}{\pi}\right)^{3/2} \sum_{i=1}^A \sum_{j=1}^A e^{-2\nu(\mathbf{r} - \mathbf{R}_{ij})^2} B_{ij} B_{ji}^{-1}, & \mathbf{R}_{ij} = \frac{1}{2\sqrt{\nu}} (\mathbf{Z}_i^* + \mathbf{Z}_j) \end{aligned}$$

- Less computational cost for heavy systems.
- Momentum dependence is not good at high energies.

Akira Ono (Tohoku University)

Analyze clusters emitted from the expanding IV source, assuming that ' v_{surf} ' of a cluster represents the emission time until which it was in thermal and chemical equilibrium with other clusters in the source.

Justification by dynamical models is desirable?

Comparison of reaction and equilibrium

 ${}^{40}\text{Ca} + {}^{40}\text{Ca}, E/A = 35 \text{ MeV}, b = 0$

Furuta and Ono, PRC79 (2009) 014608.

9/36

States at a reaction time t = $\stackrel{?}{=}$ = An equilibrium ensemble (E, V, A = 36) half of Ca + Ca system

Cluster Gas and Liquid-Gas Transition

Clusters from HIC at 50 MeV/nucleon (NuSYM talk by Wolter)

Comparison to data136,124Xe+124,112Sn, E = 32,...,150 AMeV

son: asysoft, m *>m

stn: asystiff, m.*>m

stp: asystiff, m.*<m

Single ratio n/p neutron rich 136Xe+124Sn

Single ratio t/3He

neutron rich 135Xe+124Sn

sop: asysoft, m,*<

Similar work at MSU; W.Lvnch, INPC, Florence, 2013; 124,112Sn+124,112Sn, 50 AMeV Calculations using P. Danielewicz code with clusters

·Alpha production not included in the model => alphas end up being t or 3He

 Check: combine experimental alpha spectra with tritons and helium-3 and compare to the model predictions.

•Need to extend cluster production past A=4.

Elévisioney tribery • data

Akira Ono (Tohoku University)

ICNT2013

11/36

Dynamics of Neutrons and Protons

- Neutrons and protons (or ³H and ³He)
- Fragments

ICNT2013 13/36

AMD with Two-Nucleon Collisions (very old version)

Stochastic two-nucleon collisions

- Cross section $\frac{d\sigma_{NN}}{d\Omega}(E,\theta)$ in nuclear medium.
- Pauli blocking for the final state. (Almost automatic in AMD)

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_f | V | \Psi_i \rangle|^2 \delta(E_f - E_i)$$

Stochastic equation of motion

$$\frac{d}{dt}\mathbf{Z}_i = \{\mathbf{Z}_i, \mathcal{H}\}_{\mathsf{PB}} + (\mathsf{NN \ collisions})$$

Akira Ono (Tohoku University)

ICNT2013 14 / 36

Results of AMD with Two-Nucleon Collisions

Xe + Sn central collisions at 50 MeV/u

• AMD with NN collisions

• INDRA data, Hudan et al., PRC 67 (2003)

	AMD	INDRA
<i>M</i> (<i>p</i>)	40.2	8.4
$M(\alpha)$	2.5	10.1

Two directions of extension of AMD

Wave-packet splitting: Give fluctuation to each wave packet centroid, based on the single-particle motion.

$$\frac{d}{dt}Z = \{Z, \mathcal{H}\}_{\mathsf{PB}} + (\mathsf{NN Collision})$$

+ (W.P. Splitting) + (E. Conservation)

At each two-nucleon collision

1

$$N_1 + B_1 + N_2 + B_2 \rightarrow C_1 + C_2$$

$$\frac{d\sigma}{d\Omega} = F_{\rm kin} |\langle \varphi_1' | \varphi_1^{+q} \rangle|^2 |\langle \varphi_2' | \varphi_2^{-q} \rangle|^2 \left(\frac{d\sigma}{d\Omega}\right)_{\rm NN \to NN}$$

 $\frac{d}{dt}Z = \{Z, \mathcal{H}\}_{\mathsf{PB}} + (\mathsf{NN \ Collision \ with \ Cluster})$

Image: Image:

+ (Cluster-Cluster Binding)

Two-nucleon collision:

$$\begin{split} W_{i \to f} &= \frac{2\pi}{\hbar} |\langle \Psi_f | V | \Psi_i \rangle|^2 \delta(E_f - E_i) \\ &\sum_f |\Psi_f \rangle \langle \Psi_f | = 1 \end{split}$$

What is a suitable complete basis set for the final states of a two-nucleon scattering?

• A usual choice is to change only the two.

 $\sum_{k_1,k_2} \left| \varphi_{k_1}(1) \varphi_{k_2}(2) \Psi(3,4,\ldots) \right\rangle \left\langle \varphi_{k_1}(1) \varphi_{k_2}(2) \Psi(3,4,\ldots) \right|$

 If a deuteron will propagate in medium, a more suitable basis will include

$$\varphi_{k_1}(1)\psi_{\mathsf{d}}(2,3)\Psi(4,\ldots)\rangle\langle\varphi_{k_1}(1)\psi_{\mathsf{d}}(2,3)\Psi(4,\ldots)|+\cdots$$

Two-body level density (correlated part)

$$D(E) = \sum_{\mathbf{P},k} g_k \delta(E - E_k) + \sum_{\mathbf{P},l} \frac{g_l}{\pi} 2 \sin^2 \delta_l \frac{d\delta_l}{dE}$$

Similar to Danielewicz et al., NPA533 (1991) 712.

 $N_1 + B_1 + N_2 + B_2 \rightarrow C_1 + C_2$

- N₁, N₂ : Colliding nucleons
- B₁, B₂: Spectator nucleons/clusters
- $C_1, C_2 : N, (2N), (3N), (4N)$ (up to α cluster)

$$\begin{aligned} v_{\rm NN} \, d\sigma({\sf NBNB} \to {\sf CC}) \\ &= |\langle \varphi_1' | \varphi_1^{+{\sf q}} \rangle|^2 \, |\langle \varphi_2' | \varphi_2^{-{\sf q}} \rangle|^2 \, |M|^2 \, \delta(\mathcal{H} - E) \, p_{\rm rel}^2 dp_{\rm rel} d\Omega \\ &\left(\, v_{\rm NN} \, d\sigma_{\rm NN} = |M|^2 \, \delta(\mathcal{H} - E) \, p_{\rm rel}^2 dp_{\rm rel} d\Omega \, \right) \\ &\frac{d\sigma}{d\Omega} = F_{\rm kin} \, |\langle \varphi_1' | \varphi_1^{+{\sf q}} \rangle|^2 \, |\langle \varphi_2' | \varphi_2^{-{\sf q}} \rangle|^2 \left(\frac{d\sigma}{d\Omega} \right)_{\rm NN \to NN} \end{aligned}$$

The cross section is given from the NN cross section.

$$\begin{aligned} \mathbf{p}_{\text{rel}} &= \frac{1}{2} (\mathbf{p}_1 - \mathbf{p}_2) = p_{\text{rel}} \hat{\boldsymbol{\Omega}} \\ \mathbf{q} &= \mathbf{p}_1 - \mathbf{p}_1^{(0)} = \mathbf{p}_2^{(0)} - \mathbf{p}_2 \\ \varphi_1^{+\mathbf{q}} &= \exp(+i\mathbf{q} \cdot \mathbf{r}_{\mathbf{N}_1})\varphi_1^{(0)} \\ \varphi_2^{-\mathbf{q}} &= \exp(-i\mathbf{q} \cdot \mathbf{r}_{\mathbf{N}_2})\varphi_2^{(0)} \end{aligned}$$

Akira Ono (Tohoku University)

ICNT2013 18 / 36

Construction of Final States

Clusters (in the final states) are assumed to have $(0s)^N$ configuration.

Final states are not orthogonal: $N_{ij} \equiv \langle \Phi'_i | \Phi'_i \rangle \neq \delta_{ij}$

The probability of cluster formation with one of B's:

$$\hat{P} = \sum_{ij} |\Phi'_i\rangle N_{ij}^{-1} \langle \Phi'_j|, \qquad P = \langle \Phi^{\mathbf{q}} | \hat{P} | \Phi^{\mathbf{q}} \rangle \qquad \neq \sum_i |\langle \Phi'_i | \Phi^{\mathbf{q}} \rangle|^2$$

Akira Ono (Tohoku University)

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ■ ● のへで

decide to do a collision based on $(d\sigma/d\Omega)_{\rm NN}$

C = N

do for species in $p \uparrow, p \downarrow, n \uparrow, n \downarrow$ (in a random order)

cycle if C already contains a nucleon of species

P = probability that C forms a cluster with a nucleon of species

• taking care of the non-orthogonality

• taking care of the $p_{\rm rel}$ -dependence of the phase space factors and the overlap probabilities if rand() < P then

choose a nucleon B of species

C = C + B ! put the wave packets at the same phase space point

endif

enddo

Effect of Clusters on the Density Evolution

Without cluster correlations (AMD with NN collisions)

With cluster correlations

During the time evolution, clusters are ...

- formed at NN collisions.
- propagated by AMD equation. (nothing special)
- broken by NN collisions. (nothing special)

Very strong tendency of turning into cluster gas.

	w/o C	with C	INDRA
M(p)	40.2	10.9	8.4
$M(\alpha)$	2.5	23.2	10.1
$Z_{\rm gas}/Z_{\rm tot}$	55%	78%	(40-50%)

- Gas =
 - \sum (particles of $A \le 4$)
- Liquid = ∑ (heavier fragments)

Cluster-Cluster Correlations

Relative motions between clusters should be treated quantum mechanically. In AMD,

- The binding energy a few clusters is reasonably correct,
- but the phase space of bound configuration is too small.

e.g. ⁷Li = α + t - 2.5 MeV

 $|\alpha + t\rangle \rightarrow |^{7}$ Li \rangle with probability $\approx |\langle^{7}$ Li $|\alpha + t\rangle|^{2}$

- if C_i is the cluster closest to C_i , (i, j) = (1, 2) or (2, 1),
- and if they are moderately separated, $|\mathbf{R}_{rel}| < R_{max}$,
- and if they are moving slowly away from each other, $|\mathbf{P}_{rel}| < P_{max}$ and $\mathbf{P}_{rel} \cdot \mathbf{R}_{rel} > 0$.

 $P_{\text{max}}^2/2\mu = 8 \text{ MeV}, \qquad R_{\text{max}} = 5 \text{ fm}$ (adjustable)

Energy is conserved by scaling the relative momentum between the C_1 - C_2 pair and a third cluster C_3 .

ICNT2013 23 / 36

Au + Au Central Collisions at Higher Energies

Akira Ono (Tohoku University)

ICNT2013 25 / 36

 $\frac{124}{\text{Sn}}$ Sn + $\frac{124}{\text{Sn}}$ and $\frac{112}{\text{Sn}}$ s = $\frac{1$

• Triton/³He difference is consistent with the gas part of fractionation.

Single and Double Ratios of Cluster Energy Spectra

Akira Ono (Tohoku University)

Cluster formation in low density matter

ICNT2013 27 / 36

Single and Double Ratios of Nucleon Energy Spectra

Akira Ono (Tohoku University)

Cluster formation in low density matter

ICNT2013 28 / 36

MSU Data: T.X. Liu et al., PRC 014603 (2004).

- The average asymmetry and the width are sensitive to the symmetry energy.
- Compared to data, $Z \ge N$ fragments are overproduced.

• Compared to data, $Z \ge N$ fragments are overproduced.

In order to explain the experimental data, it seems both liquid and gas (low energy part) should be more neutron rich.

- Neutrons have to be more slowly expanding.
 - Momentum dependence of the symmetry potential (m^{*}_n v.s. m^{*}_p) should be studied.
- More low-velocity α clusters.
 - Decay from cluster-like excited states of nuclei.

 ${}^{A}C^{*} \rightarrow Be + \alpha$ ${}^{A}O^{*} \rightarrow {}^{A-4}C + \alpha \qquad (\text{produ})$

 $^{1-4}C + \alpha$ (produce neutron-rich C)

- Low-density nuclear matter is highly correlated and full of clusters.
- Gas part of the expanding systems can have large n/p and t/3He ratios
 - due to isospin fractionation, and
 - due to the large α -cluster composition in gas.

Studies of more neutron-rich systems may be interesting.

- It is important to develop methods to describe both the collision dynamics and the nuclear matter properties with cluster correlations.
- AMD with cluster and cluster-cluster correlations (currently works for E/A ≥ 50 MeV/nucleon)
- Clusters (³H and ³He) in central collisions at 50 MeV/u.
 - Predictions by AMD with Skyrme SLy4 force are not very far from experimental data, but
 - Low-velocity part should be more neutron rich, or more α clusters should be emitted from fragments.

Bulk Properties and Correlations

An event of central collision of Xe + Sn at 50 MeV/nucleon (AMD calculation)

ICNT2013 33 / 36

Comparison of AMD and SMF: liquid-gas separation

Colonna, Ono, Rizzo, PRC82 (2010) 054613.

Neutron-Proton Ratio of Liquid

$$N_{\text{liq}} = N_{\text{tot}} - N_{\text{gas}}, Z_{\text{liq}} = Z_{\text{tot}} - Z_{\text{gas}}$$

- Dependence on the symmetry energy $E_{sym}(\rho)$ (soft or stiff)
- Dependence on models

 N_{gas} , Z_{gas} : Number of Nucleons in Gas

(Emitted nucleons and clusters with $A \leq 4$)

- Black line: neutrons
- Green line: protons

Comparison of AMD and SMF: expansion & fragmentation

Rizzo, Colonna, Ono, PRC76 (2007) 024611. Colonna, Ono, Rizzo, PRC82 (2010) 054613.

- SMF = Stochastic Mean Field model
- AMD = Antisymmetrized Molecular Dynamics

Central Collisions of ¹¹²Sn + ¹¹²Sn at 50 MeV/nucleon

Used the same σ_{NN} and very similar effective interactions in both models.