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Observations and the Nuclear Symmetry Energy

Andrew W. Steiner (INT/U. Washington)
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Steiner et al. (2005)

The Nuclear Symmetry Energy

e Definea = (n, —nyp)/n

S — (a(nE/A))M

" on oo

+ 5(n) = (B/ A) gy (0) — (B/A) e (0
o If £/ A is quadraticin o, S(n) = S(n)
¢S = S(ny)

e L is the derivative, L = 3n¢S’ (ng)

e I define S and L entirely from homogeneous matter
¢ At low-densities one can include clusters

e In either case, I prefer to be consistent

+48(n) = Ba | (n,0) — p,(n, )|

e Useful defimition because there are so many connections...



There are many correlations...

Heavv lon Collisions
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Steiner et al. (2005)



Gateway Quantities to the Symmetry Energy

Are S and L really the quantities of interest?

e Pressure of neutron matter near and above saturation
o Easier to compute theoretically
o Related to neutron stars

» Isovector dependence of the nucleon optical potential
o Input for heavy-ion collisions
o Relevant for transport in dense matter

e Isovector response of the ground state of a nucleus
o Modification of the single particle energies
o and the density distributions

e Isovector effective mass

Nevertheless, for now I stick with .S and L.



Neutron Star Composition

e In outer crust, p . Increases faster than
{4y, p» Digher densities more neutron-rich

A NEUTRON STAR: SURFACE and INTERIOR

L

e In inner crust, S determines EOS of
neutron matter as well as properties of
nuclei
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ATMOSPHERE
ENVELOPE
CRUST

OUTER CORE « As one proceeds into the core
INMER CORE 1P
increase faster, tend to restore isospin

symmetry

e High p_ can favor phase transitions, 1.e.
Hr- — He

« Relationship with hyperons more
complicated

Figure by Dany Page
* When strange quarks appear, there is a

hypercharge asymmetry energy



Thermal Emission from Isolated Neutron Stars
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FIG. 3. Cooling of stars with npH (continuous lines) and
npH(Q matter (dotted lines) for various stellar masses (in Mg).

n 3P, gaps are from case [c] while quark gaps, when present, .
are from model [C] of Fig. 1. o Alternative:

Page, et al. (2000) n+n—-n+p+e+ v,



Superfluidity and NS Cooling
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Quartic Terms and the Direct Urca Process

(E/A)(n,a) = (E/A) e (n, @) + a*S(n) + a*Q(n)

» Below saturation, quartic
terms are likely "small",
above saturation densities,
they may be important

_ 48(n) +5Q(n)

1) = 25ty + Q)
«3/7<mn(n) <5

o Complicates connection

between symmetry energy
and direct Urca

e Superfluidity also very
important, and depends on L

N 0 /(0-6 fm™)

Steiner (2006)



Connection to Neutron Star Radii
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e L correlated with R for 14 M

 Unless there is a strong phase transition at low density
o L not correlated with R for 2.0 M

o More about this next week...
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Magnetar Flares and the Symmetry Energy
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e Seismic events excite torsional modes <— shear modulus <— composition

composition <— S, L

e Unknown mechanism for X-ray generation in magnetosphere
e May come from core modes (these may depend on R and thus L anyway)
o Entrainment 1s important - How does entrainment depend on L.?



Supernova EOS and the Symmetry Energy
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e Current EOS uncertainties too small to explain explosion
e Some correlations with the symmetry energy
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Accreting Neutron Stars: LMXBs

Main - sequence

: Roche lobe of
companion

white idwarf

A /
Rotation

\ Lagrangian point

\\
N\ J_,""
N /

White

“
N/
-
Vil \\
/ / %
/7 Mass-transfer '~
stream

/

e

Rochelobe _— Accl:etmn

of companion “Hot spot” disk

Copyright © 2005 Pearson Prentice Hall, Inc.

e Most stars have companions: neutron stars can have main-sequence companions
e Accretion heats the crust and is episodic
At high enough density, H and He are unstable to thermonuclear explosions



Accreted Neutron Star Crusts -’

e In a cold neutron star, surface 1s

usually taken to be ~ 56Fe

e Nucle1 become larger and more
neutron rich with increasing
density

e The surface of accreting neutron
stars 1s H and He

e H and He is accreted and -
becomes unstable - X-ray burst !

140 — =
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Bﬂl—

 X-ray burst ashes undergo T BN
electron captures, neutron 10 e o
emissions, and pycnﬂnuclear Brown et al. 2009, Page et al. 2012

fusions
e Deep crustal heating




A Multicomponent Model of the Deep Crust

e Steiner (2012) 1s t
neutron drip

ne first multi-component model of the accreted crust beyond

e Employ a liquid-droplet model with an RMS deviation of 1.1 MeV
 Use quasi-statistical equilibrium 1nstead of a full reaction network

e The multi-component model 1s important because it resolves reaction pathways
that are impossible in single-component model
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Symmetry Energy and Deep Crustal Heating

e Vary masses based on nucleon-nucleon interactions with different symmetry
energies

e Skyrme models: SLy4 (L ~45 MeV) and Gs (L ~ 90 MeV)

e Begin with an 1nitial composition of X-ray burst ashes

e Find that SLy4 gives 2.4 MeV per nucleon while Gs gives 4.8 MeV per nucleon
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Other Connections to the Symmetry Energy

e Moment of inertia, I ~ M R2 (Talks by Newton and Fattoyev)
o Potential for measurement in double pulsar JO737
o Also L is correlated with I ¢yt / 1
o Glitches: magnetic torques spin down lattice
o Glitch happens when neutron superfluid catches up with crust

o I.4;q must be large enough to explain glitches
Link, Epstein, and Lattimer (1999)

o Entrainment lowers ¢4
Chamel

» Tidal deformability, A
o Measured by LIGO m NS-NS merger at ~ 400 Hz

o I/ M correlated with A / M (Vagi and Yunes 2013)

e 1-process nucleosynthesis (Talks by Shen and Roberts)
o Determines neutrino spectra in the wind
o Determines proton fraction in ejected material in NS-NS merger
o Drip-line may be important in fission cycling



Summary

Symmetry energy is important for both nuclear physics and astrophysics

 There are gateway quantities that we may want to consider carefully

e Be careful with direct Urca, S(n),and Q (n)

e I, important for NS radii - Lots of fun next week on that

e Maybe important for flares, but this is a bit messy

e Never a bad time to use good microphysics in astrophysical simulations
e Deep crustal heating sensitive to L
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