2013 ICNT Program @ FRIB, MSU July 31, 2013

THE BEAM ENERGY SCAN AT RHIC

Jinfeng Liao Indiana University, Physics Dept. & CEEM RIKEN BNL Research Center

Outline

- Brief Intro: High Energy Heavy Ion Collisions
- The RHIC Beam Energy Scan
- EOS Toward Nonzero Density
- Summary

40 Years of Asymptotic Freedom

Asymptotically Free Matter

IJ

*There exists a limiting temperature/density for hadronic matter.

* Quark-gluon matter should be expected at very high temperature/density.

* Such early visions have developed into one of today's major frontiers in nuclear physics: to study the "condensed matter physics of QCD".
* Major tools:

heavy ion collisions; lattice QCD; compact star observations; models...

Thermodynamic Transitions

from Lattice QCD (Wuppertal-Budapest)

*A transition regime in the middle

* Rapid CROSSOVER --- not 1st or 2nd

Heavy Ion Collisions

RHIC

LHC

Many others in the past and future: AGS, SPS, CSR, NICA, FAIR, FRIB, ...

(I will be focusing on the high energy end.)

Some Basics of Heavy Ion Collisions

To give some ideas (taking Gold-Gold 200GeV at RHIC as example):

- 197 (79p+118n) nucleons colliding with 197 nucleons (Nuclei A as a handle)
- 100GeV/nucleon, 200GeV N-N C.M. energy, 42mb x-section (Collision Energy as a handle)
- ♦ 39TeV in, about 28TeV left in the middle → creating ~7500 particles
- We observe the final state hadrons' identity and 3-momentum
- Estimated initial temperature ~300MeV (Trillion Kelvin) > Tc ~170MeV
- Estimated initial energy density 5-10GeV/fm^3 > H.G. threshold 1GeV/fm^3 Involving the

Thermal (EoS,fluctuations,etc), Near-Thermal (transport, e.g. viscosity, q-hat), and Far-From-Thermal (the thermalization in galsma) properties of such strongly interacting quark-gluon matter

A Color-Opaque Plasma

Strong jet quenching: a qualitatively different medium

The Nearly Perfect Fluid

Collective Flow: sensitive to viscosity!

The Nearly Perfect Fluid

The fluid is so perfect that it even carries initial state fluctuations toward final state harmonic flow! --- strong constraints on shear viscosity!

Partonic Collectivity

The observed flow of various hadrons scales with the Number of Constituent Quarks (NCS)!

(Even for phi and Omega)

Strong evidence for a significant partonic stage where the flow is developed.

THE BEAM ENERGY SCAN AT RHIC

Explore Phase Diagram of QCD

Physics Motivation

*To reach the high baryon density regime

* To map out the parton/ hadron phase boundary

* To search for a possible critical end point (CEP)

BES Runs

* RHIC top energy: 200 GeV (130 GeV)

* Beam Energy Scan (BES Phase-I) 2010 (Run10): 62.4 GeV; 39 GeV; 7.7 GeV 2011 (Run11): 27 GeV; 19.6 GeV

* Beam Energy Scan
(Phase-II) 2015~2017:
~10 times more luminosity;
additional collision energies;
other species? fixed target?

Measurements

STAR

Many particle species have been measured: pions, kaons, protons, Xi, Lambda, phi, Omega, heavy flavor; yields, flow, correlations,...

Particle Ratios

Chemical Freeze-Out Condition

Andronic, et al, arXiv:0511071

How Far Can We Reach?

Randrup & Cleymans, arXiv:0607065

Phase Boundary: Jet Quenching

Suppression turning off around 10~20GeV

Phase Boundary: NCQ Scaling

Dynamical Correlations

* Azimuthal angle correlations of same-charge and opposite-charge pairs * The same-/opposite-charge pair correlations' difference may come from mechanisms specific to QGP formation (e.g. Chiral-Magnetic-Effect) * Such difference disappears around 10~20GeV

The QCD Critical End Point (CEP)

Fodor&Katz, 2004

Gavai&Gupta, 2008

 $T_{E} = 162 + /-2 \text{ MeV} \qquad T_{E} / T_{c} = 0.94 + /-0.01$ $\mu_{E} = 360 + /-40 \text{ MeV} \qquad \mu_{E} / T_{E} = 1.8 + /-0.1$

Experimentally accessible region!

Observables for CEP

Look for specific patterns of conserved charge fluctuations which scale with correlation length (Stephanov)

$$< (\delta N)^2 > \sim \xi^2 < (\delta N)^3 > \sim \xi^{4.5}$$

 $< (\delta N)^4 > - 3 < (\delta N)^2 >^2 \sim \xi^7$

Non-monotonic dependence of skewness with collision energy

Results from BES

--- Also caveats (e.g. only measuring net protons)

Exploring Phases of QCD

from: Nu Xu

EOS TOWARD NONZERO DENSITY

Charge Fluctuations & Correlations Conserved charges in QCD: Baryon number, Isospin, Strangeness, Electric Charge, ...

Two Benchmarks of The Susceptibilities

Let us take baryonic number fluctuation as an example, and examine two simple cases:

A gas of heavy fermions with charge B (e.g. as baryonic gas)

$$n_B^{\text{free}}\big|_{\text{NR}} = BN_i \left(\frac{MT}{2\pi}\right)^{\frac{3}{2}} e^{-\frac{M}{T}} \left[e^{\frac{B\mu}{T}} - e^{-\frac{B\mu}{T}}\right],$$
$$d_n^{\text{free}}\big|_{\text{NR}} = N_i \left(\frac{M}{2\pi T}\right)^{\frac{3}{2}} e^{-\frac{M}{T}} \times 2B^n \equiv \mathcal{F}\left[\frac{M}{T}\right]B^n.$$

A gas of massless fermions with charge B (e.g. as S.B. limit)

$$n_{B}^{\text{free}}\big|_{\text{UR}} = N_{i} \frac{T^{3}}{6\pi^{2}} \bigg[B^{4} \bigg(\frac{\mu}{T}\bigg)^{3} + \pi^{2} B^{2} \bigg(\frac{\mu}{T}\bigg) \bigg],$$

$$d_{2}^{\text{free}}\big|_{\text{UR}} = N_{i} \frac{B^{2}}{6}, \qquad d_{4}^{\text{free}}\big|_{\text{UR}} = N_{i} \frac{B^{4}}{\pi^{2}}, \qquad d_{n>4}^{\text{free}}\big|_{\text{UR}} = 0.$$

N-th order susceptibilities ~ B^n : quarks B=1/3, baryons B=1

QUADRATIC SUSCEPTIBILITIES FROM (2+1)-F LATTICE QCD

- * HRG at low T
 * SB limit at high T
 * nontrivial pattern
 in transition regime
- JL, et al, PRD2007,NPB2009,JHEP2013

Wuppertal-Budpast group results (BNL-Bielefield results are consistent)

Higher Order Susceptibilities

Constraining EOS: BES HIC vs Hydro

EOS is input for hydro --- however:

- * significant contributions from hadronic reactions?
- * uncertainty of thermalization, EOS, viscosity.
- * nevertheless important and interesting approach

Holographic Models of QCD We may use holography to extract insights about strongly interacting dense matter.

EOS of Dense Phase from Holography

(Preliminary Results)

Summary

RHIC top energy & LHC: QGP as a color-opaque, nearly perfect fluid.

RHIC Beam-Energy-Scan: reaching dense ~1/2 rho_0 (but still hot) regime; constraining the phase boundary; searching for QCD Critical End Point

Efforts toward finite density EOS: lattice QCD determination of susceptibilities; BES flow measurements against hydro; QCD-related models.

THANK YOU!