Parity-Violating Measurements of the Weak Charge of ²⁰⁸Pb (PREX) & ⁴⁸Ca (CREX)

.... and possible future measurements

Hall A at Jefferson Lab

Parameter	PREX-II (Pb)	CREX (Ca)	
Beam Energy (GeV)	1.0	2.2	
Angle	5 ⁰	4 ⁰	septum magnet
Asymmetry (ppm)	0.6	2.2	
Asy Stat. Error	3%	2.4%	1% polarimetry
Error in R _N (fm)	0.06	0.02	
Beam Time (days)	35	45	

CREX / PREX : Z⁰ of **weak interaction** : sees the **neutrons**

	proton	neutron
Electric charge	1	0
Weak charge	0.08	1

T.W. Donnelly, J. Dubach, I. Sick Nucl. Phys. A 503, 589, 1989

C. J. Horowitz, S. J. Pollock, P.A. Souder, R. MichaelsPhys. Rev. C 63, 025501, 2001

PREX II and CREX 208Pb and CREX 48Ca

208Pb skin approximates infinite nuclear matter ~ small neutron star

⁴⁸Ca smaller, optimizes at higher Q²
(a natural 11 GeV expt).
Lots of neutrons, sensitive to

3N force

Tests micrscopic models for neutrons.

Want doubly-magic nuclei: little coupling to inelastic -- "clean"

Want neutrons : weak interaction couples to neutrons

http://www.jlab.org/conferences/crex/program.html

at JLab March 17 – 20, 2013 40 Participants from several fields 19 talks & discussion

How to do a Parity Experiment

(integrating method)

Small beam-related Systematics -- thanks to Jlab beam quality

- Offline asymmetries nearly identical to online.
- Corrections tiny (here, 3 ppb)
- Errors are statistical only

Parity Violating Asymmetry

beam helicity, helps suppress some systematics)

Parity Quality Beam : Unique Strength of JLab

Helicity – Correlated Position Differences $\langle X_R - X_L \rangle$ for helicity L, R $A_{raw} = A_{det} - A_Q + \alpha \Delta_E + \Sigma \beta_i \Delta x_i$ Measured separately

Points: Not signcorrected. 20-50 nm diffs. with pol. source setup & feedback

Sign flips provide further suppression : Average with signs = what experiment feels

> achieved < 5 nm

Slug # (~1 day)

Hall A High Resolution Spectrometers

Lead / Diamond Target

• Liquid He cooling (30 Watts)

Performance of Lead / Diamond Targets

Targets with <u>thin</u> diamond backing (4.5 % background) degraded fastest.

Thick diamond (8%) ran well and did not melt at 70 uA.

Solution: Run with 10 targets.

PREX-I Result

Systematic Errors		
Error Source	Absolute (ppm)	Relative (%)
Polarization (1)	0.0083	1.3
Beam Asymmetries (2)	0.0072	1.1
Detector Linearity	0.0076	1.2
BCM Linearity	0.0010	0.2
Rescattering	0.0001	0
Transverse Polarization	0.0012	0.2
Q ² (1)	0.0028	0.4
Target Thickness	0.0005	0.1
¹² C Asymmetry (2)	0.0025	0.4
Inelastic States	0	0
TOTAL	0.0140	2.1

(1) Normalization Correction applied

(2) Nonzero correction (the rest assumed zero)

Physics Asymmetry

- $A = 0.656 \ ppm$ $\pm 0.060 \ (stat) \pm 0.014 \ (syst)$
- \rightarrow Statistics limited (9%)
- → Systematic error goal achieved ! (2%)

PRL 108, 112502 (2012) PRC 85, 032501(R) (2012)

Improvements for PREX-II

Region downstream of target

 \rightarrow PREX-II to use all-metal seals

quantity	PREX-II or CREX	new PREX-III	comment
Energy, angle	1.05 GeV, 5 ⁰	2.2 GeV, 2.4 ⁰	same Q ²
L	1.36 m (CREX)	2 m	Re-engineer beamline
Septum, Acceptance Ω	1 m x 11.3 kG 2.9 msr (CREX)	1.7 m x 19 kG <mark>Ω ~ 2 <i>msr</i></mark>	new magnet, more windings
Q ² Error	0.4 %	1.7 %	Problem: need << 1 %
Polarimetry	1 %	< 1 %	Easier at higher E

[nucl-th]1308.1008 X. Vinas, M. Centelles, X. Roca-Maza, M. Warda

• Isotopically pure ⁴⁸ Ca

- Vacuum seal to trap atoms if beam destroys target
- Higher thermal conductivity and melting point than lead : should take 100 uA.
- Similar to target used in E08014 (at 40 uA)

CREX -- choice of kinematics $E = 2.2 GeV, \theta = 4^{\circ}$

Optimization of FOM equivalent to **minimum error** In

R_N

Inelastic Contributions -- background Correction dA = f * A_{state}

For ⁴⁸Ca : 1st state f = 0.19%, 2nd state f = 0.18%, next 8 states $f_{tot} = 0.03\%$

Need estimates for A_{state} and further optimization of HRS tune

Simulated Events in HRS

Energy (GeV)

Possible Future PREX - type Program ?

Each point 30 days, except PREX-III 60 days stat. error only				
Nucleus	E (GeV)	dR_N / R_N	comment	
²⁰⁸ Pb	1	1 % (0.06 fm)	PREX-II (approved by JLab PAC, A rating)	
⁴⁸ Ca	2.2 (1-pass)	0.02 fm	CREX natural 12 GeV exp't (approved, A-)	
²⁰⁸ Pb	2.2 (1-pass)	0.02 fm	PREX-III discussed today	٦
⁴⁸ Ca	2.6	2 %	surface thickness	
⁴⁰ Ca	2.2 (1-pass)	0.6 %	basic check of theory	┝
tin isotope	1.8	0.6 %	apply to heavy ion ?	
tin isotope	2.6	1.6 %	surface thickness	J

Shufang Ban, C.J. Horowitz, R. Michaels J. Phys. G39 014104 2012

PREX / CREX : Summary

- Fundamental Nuclear Physics with many applications
- PREX-I achieved a 9% stat. error in Asymmetry (original goal : 3 %)
- Systematic Error Goals Achieved !!
- **PREX-II** approved to reach original goals (runs in 2016)
- CREX approved (unscheduled)