Low-energy E1 strength in select nuclei: Possible constraint on the symmetry energy and the neutron skin

International Collaborations in Nuclear Theory (INCT) 2013 FRIB, East Lansing, Michigan, July 15- Aug. 9, 2013

Tsunenori INAKURA (Chiba U.)

in collaboration with Takashi NAKATSUKASA (RIKEN) Kazuhiro YABANA (U. of Tsukuba) Hitoshi NAKADA (Chiba U.)

<u>Outline</u>

- 1. Introduction of low-energy E1 strength (pygmy dipole resonance, PDR)
- 2. Correlation between PDR and skin thickness
- 3. Correlation between PDR and *L*
- 4. Correlation suggested by X. Roca-Maza
- 5. Summary

<u>Low-energy E1 strength:</u> <u>Pygmy Dipole Resonance (PDR)</u>

PDR in stable nuclei: < 1% Cross Section PDR in v-rich nuclei: < several % Cross Section

Observed PDRs

L (EOS)

Correlations between E1 and n-skin

RPA calculation

- Fully self-consistent calc. with Skyrme interaction
- 3D mesh representation
 - suitable for unstable nuclei having skin (or halo)
 - applicable to deformed nuclei
 - good approximation for continuum state
- No paring correlation

$$\left\{ \left[egin{array}{cc} A & B \ B^* & A^* \end{array}
ight] - \hbar \omega \left[egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight]
ight\} \left[egin{array}{cc} X_{nj}(\omega) \ Y_{nj}(\omega) \end{array}
ight] = - \left[egin{array}{cc} f(\omega) \ g(\omega) \end{array}
ight]$$

$$egin{aligned} &A_{(mi),(nj)} = \left(arepsilon_m - arepsilon_i
ight) \delta_{mn} \delta_{ij} + \left\langle \phi_m | rac{\delta h}{\delta
ho_{nj}} | \phi_i
ight
angle, &B_{(mi),(nj)} = \left\langle \phi_m | rac{\delta h}{\delta
ho_{jn}} | \phi_i
ight
angle, \ &f_{mi}(\omega) = \left\langle \phi_m | V_{ ext{ext}}(\omega) | \phi_i
ight
angle, &g_{mi}(\omega) = \left\langle \phi_i | V_{ ext{ext}}(\omega) | \phi_m
ight
angle. \end{aligned}$$

$$|{
m vib.}
angle = \sum_{
m ph} f_{ph} |1{
m p-1h}
angle$$

Systematic calc. of E1 mode

T. Inakura *et al.*, PRC84, 021302

PDR in Ca isotopes

PDR in n-rich nuclei

Inakura et al., PRC84, 021302

PDR & Skin

Confirmation of weak correlations

Reinhard & Nazarewicz, PRC81, 051303(R); Covariance analysis for 68Ni, 132Sn, and 208Pb

correlated with F_n , in accordance with Ref. [8]. Our covariance analysis suggests a lack of correlation between F_n (or neutron skin) and PDR strength; GMR, GDR, and GQR energies; and

Correlation between neutron skin & PDR in ⁶⁸Ni &¹³²Sn

Reinhard & Nazarewicz, PRC81, 051303(R); Covariance analysis for 68Ni, 132Sn, and 208Pb

correlated with F_n , in accordance with Ref. [8]. Our covariance analysis suggests a lack of correlation between F_n (or neutron skin) and PDR strength; GMR, GDR, and GQR energies; and

Interaction dependence of PDR correlation

Difficult to observe the PDR in 84Ni...

 \Rightarrow 54Ca, 24O

Short summary

- The strong correlation between PDR and skin thickness is present in properly select nuclei.
- > ²⁴O & ⁵⁴Ca are candidates to probe the neutron skin thickness.
- \succ However, slope of the correlation depends on interaction.

Correlation between *L* and **PDR** (and $\alpha_{\rm D}$)

Ongoing calculation, tentative result.

L-dependence

L-dependence of PDR

L (EOS)

L-dependence of PDR

L (EOS)

L- and interaction-dep. of PDR

Skin & L

Correlations between L, skin and PDR(& α_D)

Short summary

- PDR- L correlation has interaction dependence, especially in light nuclei.
- > It may have some connection with *L*-skin correlation.
- > α_D *L* correlation is insensitive to interaction, compared with PDR- *L* correlation.

New correlation:

taken from X. Roca-Maza's talk on Wed.

<u>Summary</u>

PDR and α_D have approximately linear correlation with *L* and skin thickness in select nuclei.
 However, the slope depends on interaction.
 Detail analysis of interaction is required.