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INTRODUCTION
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The Nuclear Many-Body Problem:

I Nucleus: from few to more than 200 strongly interacting
and self-bound fermions.

I Underlying interaction is not perturbative at the
(low)energies of interest for the study of masses, radii,
deformation, giant resonances,...

I Complex systems: spin, isospin, pairing, deformation, ...
I Many-body calculations based on NN scattering data in

the vacuum are feasible for the EoS, light and
light-medium nuclei, no extensive calculations for nuclei
along the whole periodic table.

I Based on effective interactions, Nuclear Energy Density
Functionals can be succesfully applied to the whole
periodic table (except light systems) for the description of
masses, nuclear sizes, deformations, Giant Resonances,...
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...in the near future:

I New Radioactive Beam Facilities will measure nuclear
properties far from stability: new tests for “ab-initio” and
EDF calculations

I The experimental study of nuclei at the meeting point
(A ∼ 40) between “ab-initio” and EDFs is now becoming
and will become in the near future one of our tools ...

I ... to build new EDFs with improved performance (mainly
in interaction channels that are not disentangled by the
usual fitting procedures with stable experimental data not
from future experiments)

I ... to guide “ab-initio” calculations in the description of
heavy nuclei well described within the density functional
theory.
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Approximate realization of an exact Nuclear Energy
Density Functional:

Kohn-Sham iterative scheme (static approximation)
I Determine a good E[ρ]
I Initial guess ρ0
I Calculate potential Veff from ρ0
I Solve single particle (Schrödinger) equation and find single

particle wave functions φi

I Use φi for calculating new ρ1 =

A∑
i

|φi|
2

I Repeat until convergence
Runge-Gross Theorem: dynamic generalization of the static
EDFs. ∫

dt {〈Φ(t)|i∂t|Φ(t)〉− E[ρ(t), t]} = 0

Giant Resonances well described within the small amplitude
limit (known as RPA approach)
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Nuclear Energy Density Functionals:
Main types of successful EDFs for the description of masses,
deformations, nuclear distributions, Giant Resonances, ...
Relativistic mean-field models, based on Lagrangians where
effective mesons carry the interaction:

Lint = Ψ̄Γσ(Ψ̄, Ψ)ΨΦσ +Ψ̄Γδ(Ψ̄, Ψ)τΨΦδ

−Ψ̄Γω(Ψ̄, Ψ)γµΨA
(ω)µ −Ψ̄Γρ(Ψ̄, Ψ)γµτΨA

(ρ)µ

−eΨ̄Q̂γµΨA
(γ)µ

Non-relativistic mean-field models, based on Hamiltonians
where effective interactions are proposed and tested:

Veff
Nucl = V

long−range
attractive + V

short−range
repulsive + VSO + Vpair

I Fitted parameters contain (important) correlations
beyond the mean-field

I Nuclear energy functionals are phenomenological→ not
directly connected to any NN (or NNN) interaction
(opposite to “ab-initio” calculations)
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The Nuclear Equation of State: Infinite System
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The Nuclear Equation of State: Infinite System
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DIPOLE
POLARIZABILITY
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Recent measurement in 208Pb at RCNP

At the Research Center for Nuclear Physics (RCNP), Osaka ...
I using polarized protons
I measuring protons scattered inelatically
I excitations via virtual photons (Coulomb excitation)
I able to cover a broad range of excitation energies
I set up with high-resolution and efficiency

Very good agreement with previous measurements is found

A. Tamii et al., PRL107 (2011) 062502
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Recent measurement in 208Pb at RCNP

At the Research Center for Nuclear Physics (RCNP), Osaka ...
I using polarized protons
I measuring protons scattered inelatically
I excitations via virtual photons (Coulomb excitation)
I able to cover a broad range of excitation energies
I set up with high-resolution and efficiency

Very good agreement with previous measurements is found

A. Tamii et al., PRL107 (2011) 062502

Figure taken from A. Tamii’s talk at INPC 2013

Dipole polarizability is determined with high
accuracy by taking the average of the RCNP data
plus available data in 208Pb† covering a wide
range of excitation energies: αD = 20.1± 0.6 fm3

†K. Schelhaas et al., Nucl. Phys. A 489, 189 (1988); A. Veyssiere, H. Beil, R. Bergere, P.

Carlos, and A. Lepretre, Nuclear Physics A 159, 561 (1970)
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Isovector Giant Resonances

I In isovector giant resonances neutrons and protons
“oscillate” out of phase
e.g. within a classical picture: “e-m interacting probes
basically excite protons, protons drag neutrons thanks to
the nuclear strong interaction,when neutrons approach
too much to protons, they are pushed out”

I Isovector resonances will depend on oscillations of the
density ρiv ≡ ρn − ρp ⇒ S(ρ) will drive such “oscillations”

I The excitation energy (Ex) within a Harmonic Oscillator
approach is expected to depend on the symmetry energy:

ω =

√
1

m

d2U

dx2
∝
√
k→ Ex ∼

√
δ2e

δβ2
∝
√
S(ρ)

where β = (ρn − ρp)/(ρn + ρp)
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Polarizability, Strength distribution and its moments
I The linear response or dynamic polarizability of a nuclear

system excited from its g.s., |0〉, to an excited state, |ν〉, due
to the action of an external isovector oscillating field
(dipolar in our case) of the form (Feiwt + F†e−iwt):

FJM =

A∑
i

rJYJM(r̂)τz(i) (∆L = 1→ Dipole)

I is proportional to the static polarizability for small
oscillations
α = (8π/9)e2m−1 = (8π/9)e2

∑
ν

|〈ν|F|0〉|2/E

where m−1 is the inverse energy weighted moment of the
strength function, defined as, S(E) =

∑
ν

|〈ν|F|0〉|2δ(E− Eν)

I Isovector energy weighted sum rules (EWSR) are:

m1 =
 h2

2m

NZ

A
(1+ κD) equal to one half of the HF expectation value of [F̂, [H, F̂]]

(Thouless theorem) and where κ is the dipole enhancement factor
17



Dipole polarizability: Correlations in EDFs

Covariance analysis within a model: theory
Given as set of observables O used to calibrate the parameters p
of a given model, the optimum parametrization p0 is
determined by a fit with the global quality measure,

χ2(p) =
m∑
ı=1

(
Otheo.
ı − Oref.

ı

∆Oref.
ı

)2
Assuming that the χ2 is a well behaved (analytical) function in
the vicinity of the minimum and that can be approximated by
an hyper-parabola,

χ2(p) − χ2(p0) ≈
1

2

n∑
ı,

(pı − p0ı)∂pı∂pχ
2(p − p0)

≡
n∑
ı,

(pı − p0ı)Mı(p − p0)

where M is the curvature matrix.
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Dipole polarizability: Correlations in EDFs
Covariance analysis within a model: theory
M provides us access to estimate the errors between predicted
observables (A(p)),

∆A =

√√√√ n∑
ı

∂pıAEıı∂pıA (1)

E = M−1 and the correlations between predicted observables,

cAB ≡
CAB√
CAACBB

(2)

where,

CAB = (A(p) −A)(B(p) − B) ≈
n∑
ı

∂pıAEı∂pB
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Dipole polarizability: correlations in EDFs
Covariance analysis within a model: results

From left to right: SV: P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 81, 051303(R) (2010); DD-ME1: Nils talk at

the INPC 2013; SLy5: X. Roca-Maza

Using the experimental value αD = 20.1± 0.6 fm3 † in 208Pb
the covariance analisis of SV model, a value
∆rnp = 0.156+0.025−0.021 fm was found†.
†A. Tamii et al., Phys. Rev. Lett. 107, 062502 (2011)
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Dipole polarizability in 208Pb: correlations in EDFs
Systematics for a set of EDFs
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J. Piekarewicz et al., Phys. Rev. C 85, 041302 (2012) X. Roca-Maza et al., in preparation (2013)

From the models of the left panel, using the experimental value
αD = 20.1± 0.6 fm3 † in 208Pb a model average for
∆rnp = 0.168± 0.022 fm was found.
†A. Tamii et al., Phys. Rev. Lett. 107, 062502 (2011)
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Dipole polarizability: Correlations in EDFs

Insights from a macroscopic approach
Given that only them−1 moment is required for the calculation
of the dipole polarizability, one may perform a constrained
calculation

δ {〈H〉− λ〈D〉} = 0
This defines the constrained energy E(λ). The dielectric theorem
establishes that the m−1 moment may be computed as

m−1(E1) =
1

2

∂2E(λ)

∂λ2

∣∣∣∣
λ=0

Applying this procedure in combination with the droplet
model approach of Myers and Swiatecki† yields the following
result††:

αD =
8π

9
e2
A〈r2〉
48J

(
1+

5

3

9J

4Q
A−1/3

)
† W. Myers and W. Swiatecki, Annals of Physics 84, 186 (1974)

†† J. Meyer, P. Quentin, and B. Jennings, Nuclear Physics A 385, 269 (1982)
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Dipole polarizability: Correlations in EDFs
Insights from a macroscopic approach
Within the DM model:

∆rnp =

√
3

5

[
t−

e2Z

70J

]
+ ∆rsurface

np

t ≡ 3r0
2

J/Q

1+ 9
4
J
QA

−1/3
(I− IC)

Q is the so-called surface stiffness coefficient, I≡(N−Z)/A is the relative neutron excess, ρ0=3A/4πr30 ,

IC = (e2Z)/(20JR), R ≡
√
3/5r0A

1/3 , and ∆rsurf
np=

√
3/5[5(b2n − b2p)/(2R)] is a correction caused by the

difference in the surface width bn (bp) of the neutron (proton) density profile

using these expressions:

αD ≈
πe2

54

A〈r2〉
J

1+ 5

2

∆rnp +
√
3
5
e2Z
70J − ∆r

surface
np

〈r2〉1/2(I− IC)


Adopting a value of J=31± 2MeV† one finds for 208Pb that Ic≈0.028± 0.002

√
3/5(e2Z)/(70J) is around

0.042± 0.003 fm. ∆rsurf
np for 208Pb is almost constant (0.09± 0.01 fm) in EDFs††

In the DM ∆rnp is better correlated with αDJ than with αD
alone in a heavy nucleus such as 208Pb
†James M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)

†† M. Centelles, X. Roca-Maza, X. Viñas, and M. Warda, Phys. Rev. C 82, 054314 (2010). 23



Dipole polarizability in 208Pb: Correlations in EDFs
Insights from a macroscopic approach
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Using exp. αD = 20.1± 0.6 fm3 † in 208Pb on finds the relation
∆rnp= −0.156± (0.014)theo.+

[
1.04± (0.03)exp.± (0.04)theo.

]
×10−2J

Adopting J=31± (2)est. MeV †† one obtains
∆rnp = 0.168± (0.009)exp. ± (0.019)theo. ± (0.021)est. fm
†A. Tamii et al., Phys. Rev. Lett. 107, 062502 (2011) ††James M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)
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Dipole polarizability: Correlations in EDFs

Insights from a macroscopic approach
Starting from the DM experessions

αD =
8π

9
e2
A〈r2〉
48J

(
1+

5

3

9J

4Q
A−1/3

)
& asym(A) =

J

1+ 9J
4QA

−1/3

one can write

αD ≈
8π

9
e2
A〈r2〉
48J

(
1+

5

3

J− asym(A)

J

)
and assuming that the symmetry energy coefficient of a finite
nucleus is very close to that of the infinite system† at an
appropriate sub-saturation density ρA: asym(A)≈S(ρA):

αD ≈
πe2

54

A〈r2〉
J

[
1+

5

3

L

J
εA

]
where εA ≡

ρ0 − ρA
3ρ0

and ε208 = 1/8 for ρ0 = 0.16 fm−3 for the

case of 208Pb
†M. Centelles, X. Roca-Maza, X. Viñas, and M. Warda, Phys. Rev. Lett. 102, 122502 (2009)

25



Dipole polarizability in 208Pb: Correlations in EDFs
Insights from a macroscopic approach
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X. Roca-Maza et al., in preparation (2013)

Using exp. αD = 20.1± 0.6 fm3 † in 208Pb on finds the relation
L=−145± (9)theo.+

[
6.07± (0.18)exp. ± (0.26)theo.

]
J

Adopting J=31± (2)est. MeV †† one obtains
L = 43± (6)exp. ± (12)theo. ± (12)est. MeV
†A. Tamii et al., Phys. Rev. Lett. 107, 062502 (2011) ††James M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)
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Dipole polarizability in exotic nuclei

SCRIT: a unique experimental tool for the study of
fundamental properties of exotic nuclei†

I The e-m charge distribution of unstable Sn (Z=50)
isotopes will be measured at the SCRIT (RIKEN) facility
next year via electron elastic scattering.

I If measuring the E1 response from inelastic electrons at
forward angles becomes feasible using SCRIT††, the
neutron skin of exotic nuclei and L might be extracted
experimentally from the same facility using the
correlation between αDJ and ∆rnp.

† http://www.riken.jp/en/research/labs/rnc/instrum_dev/scrit/

†† T. Suda et al. Prog. Theor. Exp. Phys. 2012, 03C008

27



Dipole polarizability in the exotic 132Sn nucleus
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CONCLUSIONS
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Conclusions:

For medium-heavy and heavy mass nuclei we expect:

I the macroscopic model presented here contains relevant
physics for the description of the dipole polarizability
(accurate within a 10% when compared with self-consistent calculations)

I αDJ is strongly correlated with the ∆rnp and L in EDFs.

For the case of 208Pb with exp. value αD = 20.1± 0.6 fm3:
I ∆rnp = −0.156±(0.014)th.+

[
1.04±(0.03)exp.±(0.04)th.

]
10−2J

I L=−145± (9)theo.+
[
6.07± (0.18)exp. ± (0.26)theo.

]
J

... and assuming J = 31± (2)est MeV:
I ∆rnp = 0.168± (0.009)exp. ± (0.019)theo. ± (0.021)est. fm
I L = 43± (6)exp. ± (12)theo. ± (12)est. MeV

30



Conclusions:

Note that new band and the original yellow band have been
derived from the same experimental value and using EDFs in
the analysis Figure modified from James M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)
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