

Constraining the symmetry energy at supra – saturation densities with heavy ion reactions

Yvonne Leifels GSI, FOPI collaboration

FI MHOLTZ

ASSOCIATION)13

An experimentalists overview

Introduction Will be skipped Detectors for HICs at 90-600 AMeV New detectors Existing detectors

Characteristics of Heavy Ion collisions Some...

Models

H. Wolter \rightarrow Friday

Probes - Current status π-/π+ n/p t/3He Strangeness

Summary/Conclusions

FOPI xy - view, Ni+Ni 1.93 AGeV

Some characteristics of Heavy ion collisions at beam energies > 100A MeV

FOPI

Heavy ion reactions at SIS18 enegies

Clusterization

Particle production

•
$$K^{+/0}$$
 threshold $E_{lab NN} = 1.6 \text{ GeV}$

•
$$\eta$$
 threshold $E_{Iab,NN} = 1.25 \text{ GeV}$

Stopping in MICs at \$1518

FOPL

Comparison FOPI data to IQMD

$$\begin{split} V^{ij} &= G^{ij} + V^{ij}_{\text{Coul}} \\ &= V^{ij}_{\text{Skyrme}} + V^{ij}_{\text{Yuk}} + V^{ij}_{\text{Mdi}} + V^{ij}_{\text{Coul}} + V^{ij}_{\text{sym}} \\ &= t_1 \delta(\vec{x}_i - \vec{x}_j) + t_2 \delta(\vec{x}_i - \vec{x}_j) \rho^{\gamma - 1}(\vec{x}_i) + t_3 \frac{\exp\{-|\vec{x}_i - \vec{x}_j|/\mu\}}{|\vec{x}_i - \vec{x}_j|/\mu} + t_4 \ln^2(1 + t_5(\vec{p}_i - \vec{p}_j)^2) \delta(\vec{x}_i - \vec{x}_j) + \frac{Z_i Z_j e^2}{|\vec{x}_i - \vec{x}_j|} + t_6 \frac{1}{\varrho_0} T_3^i T_3^j \delta(\vec{r}_i - \vec{r}_j) \\ &= t_6 \frac{1}{\varrho_0} T_3^i T_3^j \delta(\vec{r}_i - \vec{r}_j) \\ \end{split}$$

Bethe Weizsaecker – mass formula:

Volume term+Surface term+Coulomb term+symmetry term(with eos)(+pairing term not included)

Inside QMD....

after the convolution of the Skyrme type potentials supplemented by momentum dependent interactions (mdi) for infinite saturated nuclear matter at equilibrium

$$U_{skyrme} = \alpha \cdot \left(\frac{\rho}{\rho_0}\right) + \beta \cdot \left(\frac{\rho}{\rho_0}\right)^{\gamma} + \delta \ln^2 \left(\epsilon \left(\Delta \vec{p}\right)^2 + 1\right) \cdot \left(\frac{\rho}{\rho_0}\right)$$

IQMD	α MeV	β MeV	γ	δ MeV	ε c²/GeV²	к MeV
S	-356	303	1.17	-	-	200
SM	-390	320	1.14	1.57	500	200
Н	-124	71	2.00	-	-	376
HM	-130	59	2.09	1.57	500	376

Probes

 Pions 	What a mess?
• n/p	Difficult

Pion production

Inelastic cross sections

- pion production most dominant channel
- threshold energy in fixed target pp collisions 0.29 GeV
- pp and np cross sections differ
- production via resonances (Δ , N*)
- pion production sensitive to N/Z
- in case predominantly via Δ

$$\frac{\pi^{-}}{\pi^{+}} = \frac{5N^{2} + NZ}{5Z^{2} + NZ} \approx \left(\frac{N}{Z}\right)^{2}$$

pion recreation cycle

$$NN \rightarrow NN \qquad NN \rightarrow N\Delta$$
$$N\Delta \rightarrow NN \qquad \Delta \rightarrow N\pi$$
$$N\pi \rightarrow \Delta$$

Rion production "en-detail"

Relevant isospin dependent cross sections Detailed balance ≻N Momentum-dependent potential Pauli-blocking $\succ \Lambda$ Pauli-blocking of final states Collisional broadening of width, new decay channels in medium > Momentum-dependent potential, $U_{opt} \sim -30$ MeV (Ericson-Weise, "Pions and nuclei") Off – shell propagation $\succ \pi$ Potential derived from self energy > Pauli – blocking of states if π is absorbed

Sub-threshold pion production

Experimental data at 400A MeV

W. Reisdorf et FOPI Nucl.Phys.A781:459-508,2007

Confrontation with models

Norld could have been so nice...

Z. Xiao et al. PRL 102 (2009) 625 J. Xie et al, PLB 718 (2013) J. Xu et al., nucl-the 1305.0099 G. Ferini et al. PRL 97 (2006) 202301 Feng et al, nucl-th 0907.2990 C. Hartnack, J. Aichelin (2013) J. Hong, P. Danielewicz (2013)

Attempts to explain differences:

M. Di Toro et al., arXiv:1003.2957

• symmetry energy \rightarrow n/p ratio, number of nn, np, pp collisions asy stiff $\frac{n}{p} \downarrow \Rightarrow \frac{Y(\Delta^{0,-})}{Y(\Delta^{+,++})} \downarrow \Rightarrow \frac{\pi^{-}}{\pi^{+}} \downarrow$ • medium \rightarrow effective masses (N, π , Δ), cross sections \rightarrow thresholds asy stiff $\Rightarrow \frac{\pi^{-}}{\pi^{+}} \uparrow$

Model comparison:

Transport at low energies Trento 2009 \rightarrow H. Wolter IBUU04 vs UrQMD \rightarrow Models give different results with respect to N/Z ratios, time evolution of N/Z etc. (W.M. Guo et al. arxiv:1306.4873v1)

Common effort needed

Companison of models

A CARGON

Model	Туре	SE	U _{NN}	N mass	Δ	Δ Pot.	det. Bal.	π mass	σ in med
IQMD	QMD- Nantes	Expon ent, no kinetic term	Skyrme with moment um	free	phase shift from Randrup	2/3 U _{NN}	yes	free	free, isospin dependent
IBUU04	BUU								
LQMD									
ImQMD									

Pions	
• n/n	What a mess?
1 " P	Difficult

Predictions

Predicted observables

- n/p ratios
- n/p differential direct flow
- n/p differential elliptic flow

G. Young et al. nucl-the0703042

Elliptic neutron/proto/n flow

UrQMD predictions P. Russotto et al. PLB 697 (2011) 471

Asy-hard Neutron elliptic flow as large as Z=1

Asy-soft

Neutron elliptic flow smaller than proton flow

Elliptic neutron/proton flow

Cutted to FOPI acceptance:

- Elliptic flow of protons described by the model predictions
- Elliptic flow of Z=1 not a sensitive observable any more
- Measure neutrons and charged particles

Published results

Comparison to UrQMD predictions:

$$E_{sym} = 22 \left(\frac{\rho}{\rho_0}\right)^{\gamma} + 12 \left(\frac{\rho}{\rho_0}\right)^{2/3}$$

Diffent parametrization for inmedium cross sections neutron/hydrogen

FP1: $\gamma = 1.01 \pm 0.21$ **FP2:** $\gamma = 0.98 \pm 0.35$ neutron/proton **FP1:** $\gamma = 0.99 \pm 0.28$ **FP2:** $\gamma = 0.85 \pm 0.47$ adopted: $\gamma = 0.9 \pm 0.4$

FP1/FP2 different parametrizations for in medium elastic cross sections \rightarrow J. Lukasik

t/3He data

A Walter

Increasing effectsbeam energy

- impact parameter
- system mass
- \rightarrow Talk of J. Lukasik

The 1/3 de puzzle

Difference beyond expectations for Coulomb at low energies

Yvonne Leifels, ICIVI 2013

Where are all the 3He gone?

Experimentalists approach to clusterization

A. LeFevre, C. Hartnack, Y. Leifels, J. Aichelin,

- Good description of flow data
- Z yields can be accounted for
- Isotopic yields difficult
- Influence of cluster formation on flow
- Various studies on the way

Problem with most approaches start at relatively late times

but

pre-fragments are formed early

Our approach

- Simple algorithm
- Applicable to any transport model
- Using potentials of the transport model
- Starting formation of clusters early
- Propagation in Coulomb field
- Eventually deexcitation by evaporation

Au+Au b₀ < 0.15

Simulated annealing cluster algorithm A. Lefevre, C. Hartnack, J. Aichelin, Y. Leifels

1. Take randomly 1 nucleon out of pre-seleceted fragment

Dorso et al. (Phys.Lett.B301:328,1993)

2. Add it randomly to another fragment

 $\underline{E' < E} \rightarrow$ new configuration

 $\underline{E' > E} \rightarrow$ old configuration with a probability depending on E'-E Repeat this procedure very many times...

 \rightarrow leads to the most bound configuration (Metropolis algorithm)

SACA produces stable fragment yiels relativly early

- → MSTs yield stable fragment distributions at later times (150-400 fm/c), where the dynamical conditions are no longer the same.
- → Advantage of SACA: the fragment partitions can reflect the early dynamical conditions (Coulomb, density, flow details, strangeness...).

* P.B. Gossiaux, R. Puri, Ch. Hartnack, J. Aichelin, Nuclear Physics A 619 (1997) 379-390

SACA with pairing

$$\Delta B_{pairing}(N,Z,\rho_{B}) = \Delta B_{pairing}(N,Z,\rho_{O}) * f_{\eta}(N,Z,\rho_{B})$$

correction function $f_{\eta}(N,Z,\rho)$ following the approach
by E. Khan et al., NPA 789 (2007) 94
 $V_{pairing} = V_{0}(1-\eta\frac{\rho(r)}{\rho_{0}(r)})\delta(\vec{r}_{1}-\vec{r}_{2})$
 η chosen to fit experimental data (Indra at 150A MeV

W. Reisdorf and the FOPI Collaboration Nuclear Physics A 848 (2010) 366–427

IQMD + SACA reproduces the low and the high energy yields of t/³He

 \rightarrow with asymmetry term and pairing at low energies

 \rightarrow without at the high energy

W. Reisdorf and the FOPI Collaboration Nuclear Physics A 848 (2010) 366–427

IQMD + SACA reproduces the low and the high energy yields of t/³He

 \rightarrow with asymmetry term and pairing

Primary clusters are mostly created at a rather low density where the Khan correction factor strongly over-emphasizes the "structure" binding energy as regard to the mean field.
Forces to use an artificial linear dependence.

→ The Khan approach is not valid in-medium.

→Use instead a scaling dependence of the "structure" binding energy with regards to the total binding energy :

 $\Delta B_{\text{pairing}}(N,Z,\rho_{\text{B}}) = \Delta B_{\text{pairing}}(N,Z,\rho_{0}) / B_{\text{exp. wo Coulomb BW}}(N,Z,\rho_{0}) \times B_{\text{mean field+Yuk.+asym.}}(N,Z,\rho_{\text{B}})$

Strangeness as a

HADES

Yvonne Leifels,

Some numbers from the HADES beam time

A WHEN

Total number of recorded events:	
Number of reconstructed KOs.	7.3 x 109 events in ~4 Weeks
	26,000
Number of reconstructed K0s / event:	1/280 000
Number of reconstructed K0s in acceptance of	f K+:
Number of Ku	13,000 (guessed)
	at least five times higher
Statistical error in this run (K0 only):	- 10/
E _{beam} /E _{thr}	< 170
	0.75
Deep subthreshold energy	800A MeV
E _{beam} /E _{thr}	
Metad systematics	0.5
Metag systematics	~ Yield lower by a factor of 10
Statistical error at 800 MeV assuming same co	onditions:
ICNT 2013	

The other strange particle

 η production much lower than expected

G. Martinez et al., arXiv-ex:9912011v1

Summary – Observables sensitive to SE

$\pi + /\pi$ – measurements in Au+Au – Ca+Ca at 400 – 1.5 (2.0)A GeV

- ratio in Au+Au consistent with the isobar model at around 1 AGeV
- drops at higher energies $\rightarrow 1$
- rises at low energies
- strong rise is supportend by (N/Z)² dependence of ratio at 400A MeV
- potentially sensitive to SE but conclusions model dependent

t/3He measured in Au+Au – Ca+Ca at 400 – 1.5A GeV

- side flow tiny differences t v1 sligthly larger than ³He
- elliptic flow differences at higher beam energies and peripheral collisions (momentum dep.)
- flow described by IQMD and UrQMD (wo accounting differences between t and ³He)

n/p elliptic flow measured at 400A MeV Au+Au

- UrQMD describes data with moderatly hard SE
- More data taken → Analyses ongoing Generally, flow, stopping, pion production described by IQMD (and UrQMD), with exception of pion flow and cluster production

Strangeness

 K0/K+ ratio may be extracted in high statistics run of HADES – Au+Au 1.23AGeV

800 MeV seems feasible...

Models

No consistent description of isospin observables (except n/p...)

New experiments

More data with new projects at radioactive beam facilities

What did Learn from using transport codes!

- Code version
 - code version system (svn or something similar)
 - use version numbers for code (also in publications)
- Any version must be documented
 - reference plots for verification
 - source files
 - input files
 - executable
- One common output format
 - format for freeze-out configuration
 - format for time steps
- No compromises (all processes/effects which are established must be included)
- Parameters must be read in (and not buried somewhere in the code)
- Input data (cross sections, potentials) should be stored in external files
- Distribute your code to experimentalists

El/Matesle7

Data base for HI collisions and relevant elementary data

- experimental data
- for bench mark testing
- cover certain range in energy and system sizes
- impact parameter selection must be described
- simple observables

t/³He elliptic flow compared to IQMD/UrQMD

SACA

SACA

SACA

SACA

SACA

