Equilibration Chronometry

Alan McIntosh
Texas A&M University Cyclotron Institute
Projectile approaches target

non-central collision near the Fermi Energy
Overlap of target and projectile

Low density neck

Neutron enrichment of low density neck
Velocity gradient, surface tension

Instabilities develop (Rayleigh-like)
Rupture of neck

Strong deformation of PLF*

NZ gradient & relaxation within PLF*
PLF* rotates and scissions

NZ equilibration ceases

Alignment angle measures duration of equilibration
Dynamical Decay & Neutron Content

Correlation between fragment size and velocity. Angular distribution shows strong alignment. Observed in many systems by many groups.

Not compatible with standard statistical decay.

Mechanism: production of low density neck, followed by multiple neck rupture...at the expense of the Quasi-Projectile

Mid-Rapidity Material (neck) is neutron rich

Ta+Au@33AMeV
Early work on N-Z equilibration:

“In order to follow the time evolution of the collective degrees of freedom excited in heavy reactions one needs a clock. Nature has provided one which, although not very accurate, can span incredibly short times. This clock is the angular deflection of the fragments.”

Longer contact time
→ more energy damping
→ more N-Z equilibration
Different projectiles tend toward the same \((N/Z)_{eq}\)

Li and Ko PRC 57 2065 (1998)
N/Z equilibration timescale in BUU

Galichet et al., PRC 79, 064615 (2009)
N/Z of complex particles, exp & BNV

Hudan et al. PRC 86, 921603(R) (2012)
Xe+Sn@50AMeV

E. DeFilippo et al., PRC 86, 014610 (2012)
Observation of dependence
Our measurement

\[^{70}\text{Zn} + ^{70}\text{Zn} \]
\[^{64}\text{Ni} + ^{64}\text{Ni} \]
\[^{64}\text{Zn} + ^{64}\text{Zn} \]
\[^{64}\text{Zn} + ^{64}\text{Ni} \]

@ 35 MeV/nucleon

NIMROD 4\pi array
excellent isotopic resolution
Velocity Distributions

These particles are daughters of the PLF*
Angular Distributions

Separating Statistical and Dynamical

Assume yield $\alpha > 100^\circ$ is statistical
Reflect around 90°.
Interpolate smoothly $80^\circ < \alpha < 100^\circ$

What remains is non-standard statistical
i.e. what remains is dynamical
Equilibration Chronometry

Composition vs alignment

\[\Delta = \frac{(N-Z)}{A} \]

As LF loses neutrons, HF gains neutrons

Exponential dependence → First Order Kinetics
Rate of Equilibration

Fit:
\[\Delta = a + b \exp\left(-c\alpha\right) \]

- a: equilibrium value
- b: distance from equilibrium at t=0
- c: N-Z equilibration rate constant
Assessing the Time Scale

Evaporative emission of light, charged particles contains information on the angular momentum.

For no spin, the emission probability is equal in all directions. For high spin, equatorial emission is preferred.

The equatorial plane is defined by v_{CM} and the beam axis. The angular distribution of alpha particles relative to this plane is examined.
Assessing the Time Scale

GEMINI simulations: reproducing this width can be done with spin from 10hbar (E*/A=0.8MeV) to 50hbar (E*/A=1.2MeV). We can take J=22hbar with a factor of 2.2 uncertainty.

\[\omega = \frac{J}{\hbar / I_{\text{eff}}} \]

The moment of inertia, I, is calculated for two touching spheres with radii given by the masses of the two fragments. I : from 2.8E42MeVs² to 9.9E42MeVs² depending on fragment masses.

\[t = \frac{\alpha}{\omega} \]
Time Scale

$Z_H = 12, \ Z_L = 7$

- **Heaviest Frag.**
- **2nd Heaviest Frag.**

$\langle \Delta \rangle = \langle (N-Z)/A \rangle$

- $t = 0$
- $1/e$ time
 - $\approx 0.3\ t_s$
 - (100fm/c)
- $t \approx 1.5\ t_s$
 - (450fm/c)
What about the effect of…
• Statistical decay
• Effect of secondary decay
• Choice of alignment angle
Separating Stat & Dynam

Fractional Yield

\(f_{\text{stat}} = \frac{Y_{\text{stat}}}{(Y_{\text{stat}} + Y_{\text{dyn}})} \)

\(f_{\text{dyn}} = \frac{Y_{\text{dyn}}}{(Y_{\text{stat}} + Y_{\text{dyn}})} \)
Effect of Statistical Decay

\[\Delta = \Delta_{stat} f_{stat} + \Delta_{dyn} f_{dyn} \]

Isolated Dynamical Component

General trend maintained
Effect of Secondary Decay

- Shift toward β-stability
- Decreases amplitude
- Larger effect for larger E^*
- Dependence of final value on initial value

Secondary Decay mutes the effect
Does not create
Does not destroy
Effect of Choice of Alignment Angle

α is somewhat more sensitive

$\alpha = \theta_{\text{prox}}$

Effect of Beam and Target Composition

- Similar equilibration rates
- Notable differences in composition
Effect of Beam and Target Composition

70Zn+70Zn vs 64Ni+64Ni
Slightly lower system asymmetry
→ Slightly lower composition
Effect of Beam and Target Composition

70Zn+70Zn vs 64Zn+64Zn
Lower proj. & targ. asymmetry
→ Lower initial asymmetry
→ Lower equilibrium asymmetry
→ Smaller change in asymmetry
Effect of Beam and Target Composition

64Zn+64Zn vs 64Zn+70Zn
- Increase only target asymmetry
 - Higher initial asymmetry in LF
 - Same initial asymmetry in HF
 - Higher equilibrium asymmetry
Equilibration rate constants

Timescale is 0.3zs (100fm/c).

This is not only a measurement of the timescale.

We observe exponential change in the composition, infer the effect of first order kinetics, and extract a rate constant.
Characterizing Neutron-Proton Equilibration in Nuclear Reactions with Subzeptosecond Resolution

A. Jedele,¹,²,* A. B. McIntosh,¹† K. Hagel,¹ M. Huang,¹ L. Heilborn,¹,² Z. Kohley,³,⁴ L. W. May,¹,² E. McCleskey,¹ M. Youngs,¹ A. Zarrella,¹,² and S. J. Yennello¹,²
¹Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA
²Chemistry Department, Texas A&M University, College Station, Texas 77843, USA
³National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
⁴Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
(Received 20 May 2016; published 10 February 2017)

Detailed characterization of neutron-proton equilibration in dynamically deformed nuclear systems

A. Rodriguez Manso,¹,* A. B. McIntosh,¹† A. Jedele,¹,² K. Hagel,¹ L. Heilborn,¹,² Z. Kohley,³,⁴ L. W. May,¹,² A. Zarrella,¹,² and S. J. Yennello¹,²
¹Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA
²Chemistry Department, Texas A&M University, College Station, Texas 77843, USA
³National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
⁴Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
(Received 24 January 2017; published xxxxxx)
Upcoming Experiment

How does the equilibration depend on bombarding energy?
• More extreme densities probed at higher bombarding energy
• Evolution of shape deformation with bombarding energy
• Evolution of the break-up mechanism with beam energy

Ca+Ni @ 15, 25, 35, 45 MeV/nucleon
NIMROD 4π charged particle and 4π neutron array
Frags. of PLF*: isotopic resolution
Dear Colleagues,

Reaction dynamics around the Fermi energy is rich with new things for us to learn.

Equilibration chronometry can be a powerful tool. It shows time-dependence! I suggest this can be used to **refine the microscopic interactions** used in transport models and thereby constrain the EOS.

We can provide isotopic distributions of dynamically produced fragments as a function of alignment angle, and relate the alignment to time.

Together, I would like to explore:
- time dependence of NZ equilibration (actual time)
- time dependence of NZ equilibration (time from angle)
- the evolution of the total density and asymmetry density
- sensitivity to the microscopic interaction (e.g. Asy-Stiff vs -Soft)

Cheers,

-Alan