Pions in pBUU

Pawel Danielewicz
National Superconducting Cyclotron Laboratory
Michigan State University

Transport 2017: International Workshop on Transport Simulations for Heavy Ion Collisions under Controlled Conditions
FRIB-MSU, East Lansing, Michigan, March 27 - 30, 2017
Interest: π as Probe of High-ρ Symmetry Energy

B-A Li PRL88(02)192701: $S(\rho > \rho_0) \Rightarrow n/p_{\rho > \rho_0} \Rightarrow \pi^-/\pi^+$

Pions originate from high ρ
Simulations of Heavy-Ion Collisions

Separation of time and distance scales:

Short scales reduced to negligible extent with outcomes of events treated probabilistically

Long scales treated explicitly and deterministically

Cut-off scales: $t \sim 1 \text{ fm}/c$, $r \lesssim 1 \text{ fm}$

Primarily binary collision processes

Equation of state: if there is an optical potential affecting a particle, that particle impacts the interaction parts of thermodynamic functions.

Low-E pion production: $N + N \leftrightarrow N + \Delta$, $\Delta \leftrightarrow N + \pi$
\(\Delta \text{ in } \pi-N \text{ Interactions} \)

\(\pi-p \) scattering cross sections

\[
\sigma = \frac{\pi}{p^2} \frac{2J+1}{2s+1} \frac{\Gamma^2}{(E - m_\Delta c^2)^2 + \Gamma^2/4} \equiv \frac{\pi}{p^2} \frac{2J+1}{2s+1} \Gamma \mathcal{A}_\Delta(E)
\]

\(J = 3/2, \ m_\Delta = 1232 \text{ MeV}/c^2, \ \Gamma(p) \propto p^3, \ \mathcal{A}_\Delta \) - spectral funct
Inelastic NN Interactions

Decomposition of inelastic NN cross section

Weil et al EPJA48(12)111
Production and Absorption: Detailed Balance

Time reversal symmetry: same magnitude of mtx element for forward & backward process,
\[|M_{NN\rightarrow N\Delta}| = |M_{N\Delta\rightarrow NN}|. \]

\[
\frac{dN_{\Delta}}{dt} \propto \int dp \, dm_{\Delta} \, \delta(p_{N} + p_{\Delta} - p_{N} - p_{N}) \\
\times \delta(\epsilon_{N} + \epsilon_{\Delta} - \epsilon_{N} - \epsilon_{N}) \\
\times |M_{NN\rightarrow N\Delta}|^{2} (f_{N} f_{N} - f_{N} f_{\Delta}) \, A_{\Delta}
\]

in equilibrium: \(f = e^{(\mu - \epsilon)/T} \)

\[
\sigma \, \nu \propto \int dp \, dm_{\Delta} \, \delta(E - E) \, |M|^{2} \, A_{\Delta}
\]

Detailed-balance relation: \(\sigma_{NN\rightarrow N\Delta} \rightleftharpoons \sigma_{N\Delta\rightarrow NN} \)

Relation nontrivial for \(\Delta \) due to mass spread.

Balance violated: no thermal distribution, no law of mass action.
Production and Absorption: Detailed Balance

Time reversal symmetry: same magnitude of mtx element for forward & backward process,
\[|M_{NN \rightarrow N\Delta}| = |M_{N\Delta \rightarrow NN}|. \]

\[
\frac{dN_{\Delta}}{dt} \propto \int dp \, dm_{\Delta} \, \delta(p_N + p_{\Delta} - p_N - p_N) \\
\times \delta(\epsilon_N + \epsilon_{\Delta} - \epsilon_N - \epsilon_N) \\
\times |M_{NN \rightarrow N\Delta}|^2 (f_N f_{N\Delta} - f_N f_{\Delta}) \, A_{\Delta}
\]

in equilibrium: \(f = e^{(\mu - \epsilon)/T} \)

\[
\sigma \nu \propto \int dp \, dm_{\Delta} \, \delta(E - E) \, |M|^2 \, A_{\Delta}
\]

Detailed-balance relation: \(\sigma_{NN \rightarrow N\Delta} \leftrightarrow \sigma_{N\Delta \rightarrow NN} \)

Relation nontrivial for \(\Delta \) due to mass spread.

Balance violated: no thermal distribution, no law of mass action!
\[\Delta \leftrightarrow N + \pi \quad \Rightarrow \quad U_\Delta = U_N + U_\pi \]

‘Conservation’ of potential consistent with the quark perspective. Also greatly facilitates calculations of process kinematics as thresholds in kinetic energy stay put.

Ferini et al NPA762(05)147: \(U_\pi = 0 \) & \(U_\Delta = U_N \) employed in most models, including IBUU.

However, a strong isospin-dependent potential is needed to explain the existence of pionic atoms!

pBUU: \(U \) dependent on conserved quantities, density of baryon number and isospin - \(\pi \) end up with potentials that depend on isospin & symmetry energy.
\[\Delta \leftrightarrow N + \pi \quad U_\Delta \equiv U_N + U_\pi \]

'Conservation' of potential consistent with the quark perspective. Also greatly facilitates calculations of process kinematics as thresholds in kinetic energy stay put.

Ferini et al NPA762(05)147: \(U_\pi = 0 \) & \(U_\Delta = U_N \) employed in most models, including IBUU.

However, a strong isospin-dependent potential is needed to explain the existence of pionic atoms!

pBUU: \(U \) dependent on conserved quantities, density of baryon number and isospin - \(\pi \) end up with potentials that depend on isospin & symmetry energy.
π vs Baryon Optical Potentials

\[\Delta \leftrightarrow N + \pi \quad U_\Delta \equiv U_N + U_\pi \]

’Conservation’ of potential consistent with the quark perspective. Also greatly facilitates calculations of process kinematics as thresholds in kinetic energy stay put.

Ferini et al NPA762(05)147: \(U_\pi = 0 \) & \(U_\Delta = U_N \) employed in most models, including IBUU.

However, a strong isospin-dependent potential is needed to explain the existence of pionic atoms!

pBUU: \(U \) dependent on conserved quantities, density of baryon number and isospin - \(\pi \) end up with potentials that depend on isospin & symmetry energy.
π vs Baryon Optical Potentials

$\Delta \leftrightarrow N + \pi \quad U_\Delta \equiv U_N + U_\pi$

’Conservation’ of potential consistent with the quark perspective. Also greatly facilitates calculations of process kinematics as thresholds in kinetic energy stay put.

Ferini et al NPA762(05)147: $U_\pi = 0$ & $U_\Delta = U_N$ employed in most models, including IBUU.

However, a strong isospin-dependent potential is needed to explain the existence of pionic atoms!

pBUU: U dependent on conserved quantities, density of baryon number and isospin - π end up with potentials that depend on isospin & symmetry energy
Symmetry-Energy Derived π Potential

Jun Hong&PD PRC90(14)024605 Nucl density: Thomas-Fermi
Pions Probe System at High-ρ!

Song&Ko PRC91(15)014901

PD PRC51(95)716

π test the maximal densities reached and collective motion then

π test the maximal densities reached and collective motion then
Pions as Probe of High-ρ Symmetry Energy

B-A Li PRL88(02)192701: $S(\rho > \rho_0) \Rightarrow n/p_{\rho > \rho_0} \Rightarrow \pi^-/\pi^+$

Pions originate from high ρ
Interpretation of FOPI Data

Reisdorf et al NPA781(07)459

Transport IBUU04 Xiao et al PRL102(09)062502

Symmetry energy dropping with ρ, at $\rho > \rho_0$!?
Net π Yields and $U(\rho, p)$ in pBUU

Reisdorf et al NPA781(07)459

197Au+197Au

π^- FOPI π^+ FOPI

(a) mom-indep.MF (b) mom-dep.MF

Jun Hong & PD PRC90(14)024605, π^- and π^+

?Imperfect Mom Dependence?? [No sensitivity to π/Δ rates] affects maximal densities reached
\[\pi \text{ Yields Reproduced with Softened } U(p) \]

solid: softened \(U(p) \)

but then...
Inferior Description of Midrapidity Flow Anisotropy

solid: new $U(p)$, dashed: old $U(p)$

Jun Hong & PD PRC90(14)024605

$R_N \leftrightarrow$ elliptic flow

too weak with new $U(p)$
FOPI π^-/π^+ Reproduced by pBUU

... irrespectively of $U(\rho)$, right panel

Left panel: discrepancies in the literature - correlation vs anticorrelation of $S(\rho > \rho_0)$ with π^-/π^+.
FOPI π^-/π^+ Reproduced by pBUU

\[\text{...irrespective of } S_{\text{int}}(\rho) = S_0 \left(\frac{\rho}{\rho_0} \right)^\gamma : \]

?no hope?

\textbf{Au+Au}
Original Idea Still Correct for High-E π's

\[S_{\text{int}}(\rho) = S_0 \left(\frac{\rho}{\rho_0}\right)^\gamma \]
n/p Ratio in pBUU at $\rho > \rho_0$

changes with the supranormal symmetry energy:

$$S_{\text{int}}(\rho) = S_0 (\rho/\rho_0)^\gamma$$
Why Differences for Net π Ratios?

In pBUU isospin-driven π^\pm optical potential

π/Δ rate sensitivities claimed in Larionov&Mosel NPA728(03)135; Prassa et al NPA789(07)311 and Song&Ko PRC91(15)014901. Virtually none there in pBUU!
Changing mo-dep of MF: either v_2 good or near-threshold M_π, but not both!

$$R_N = \frac{1 - v_2}{1 + v_2}$$
Tinkering with Incompressibility

Results so far for $K = 210$ MeV.

While elliptic flow is more sensitive to the momentum dependence of mean field, or m^* / m, the sensitivity to incompressibility K is also there!

$K = 380$ MeV
Sensitivity of Elliptic Flow to m^*/m and K

$K = 270 \text{ MeV}$
and changing m^*/m

$m^*/m = 0.7$
and changing K

Hysteresis in both cases due to competition between density and momentum dependence
Sensitivity of M_π to Incompressibility K

$m^*/m = 0.75$ and changing K
Raising K Allows to Describe Both M_π and ν_2!

Bands for $K = (240 - 300)$ MeV & optimal m^*/m

→ Constraints on EOS, at moderately supranormal densities, à la LeFèvre et al
Energy Per Nucleon

Symmetric Matter

![Graph showing energy per nucleon](image.png)
Pressure

Symmetric Matter

![Graph showing pressure vs density with various theoretical and experimental data points.](image)
Conclusions

- Detailed balance must be obeyed for thermodynamic consistency
- Uncertainties in the near-threshold π production include π & Δ optical potentials & in-medium rates
- Pions probe high-ρ matter, net density, n/p-ratio, collective flow there! \dots $U(p)$ & K
- pBUU reproduces FOPI π^-/π^+, irrespectively of details in U and S
- High-energy π^+/π^- ratio more robust than ratio of net yields
- Efforts to reproduce simultaneously collective flow and pion yields lead to EOS constraints at moderately supranormal densities

Supported by National Science Foundation under Grant US PHY-1403906
Conclusions

- Detailed balance must be obeyed for thermodynamic consistency
- Uncertainties in the near-threshold π production include π & Δ optical potentials & in-medium rates
- Pions probe high-ρ matter, net density, n/p-ratio, collective flow there! . . . $U(p)$ & K
- pBUU reproduces FOPI π^-/π^+, irrespectively of details in U and S
- High-energy π^+/π^- ratio more robust than ratio of net yields
- Efforts to reproduce simultaneously collective flow and pion yields lead to EOS constraints at moderately supranormal densities

Supported by National Science Foundation under Grant US PHY-1403906