pBUU Description

Pawel Danielewicz

National Superconducting Cyclotron Laboratory Michigan State University

Transport 2017: International Workshop on Transport Simulations for Heavy Ion Collisions under Controlled Conditions

FRIB-MSU, East Lansing, Michigan, March 27 - 30, 2017

Solution of Boltzmann Eq

- 1-Ptcle Energies from Energy Functional
 - Volume (incl Momentum), Gradient, Isospin, Coulomb Terms
- Covariance
 - Covariant: Volume (incl Momentum) Term in Energy, Collisions
 - Noncovariant: Gradient, Isospin, Coulomb Terms in Energy
 - Employed (so far) up to 20 GeV/nucl
- Pions contribute to Symmetry Energy
- Spectral functions of △ and N* Resonances in adiabatic approximation
 - Detailed Balance for Broad Resonances
- A = 2,3 Clusters produced in Multinucleon Collisions
 - Cluster Break-Up Data used in describing Production

- Solution of Boltzmann Eq
- 1-Ptcle Energies from Energy Functional
 - Volume (incl Momentum), Gradient, Isospin, Coulomb Terms
- Covariance
 - Covariant: Volume (incl Momentum) Term in Energy, Collisions
 - Noncovariant: Gradient, Isospin, Coulomb Terms in Energy
 - Employed (so far) up to 20 GeV/nucl
- Pions contribute to Symmetry Energy
- Spectral functions of △ and N* Resonances in adiabatic approximation
 - Detailed Balance for Broad Resonances
- A = 2,3 Clusters produced in Multinucleon Collisions
 - Cluster Break-Up Data used in describing Production

- Solution of Boltzmann Eq
- 1-Ptcle Energies from Energy Functional
 - Volume (incl Momentum), Gradient, Isospin, Coulomb Terms
- Covariance
 - Covariant: Volume (incl Momentum) Term in Energy, Collisions
 - Noncovariant: Gradient, Isospin, Coulomb Terms in Energy
 - Employed (so far) up to 20 GeV/nucl
- Pions contribute to Symmetry Energy
- Spectral functions of △ and N* Resonances in adiabatic approximation
 - Detailed Balance for Broad Resonances
- A = 2,3 Clusters produced in Multinucleon Collisions
 - Cluster Break-Up Data used in describing Production

- Solution of Boltzmann Eq
- 1-Ptcle Energies from Energy Functional
 - Volume (incl Momentum), Gradient, Isospin, Coulomb Terms
- Covariance
 - Covariant: Volume (incl Momentum) Term in Energy, Collisions
 - Noncovariant: Gradient, Isospin, Coulomb Terms in Energy
 - Employed (so far) up to 20 GeV/nucl
- Pions contribute to Symmetry Energy
- Spectral functions of △ and N* Resonances in adiabatic approximation
 - Detailed Balance for Broad Resonances
- A = 2,3 Clusters produced in Multinucleon Collisions
 - Cluster Break-Up Data used in describing Production

- Solution of Boltzmann Eq
- 1-Ptcle Energies from Energy Functional
 - Volume (incl Momentum), Gradient, Isospin, Coulomb Terms
- Covariance
 - Covariant: Volume (incl Momentum) Term in Energy, Collisions
 - Noncovariant: Gradient, Isospin, Coulomb Terms in Energy
 - Employed (so far) up to 20 GeV/nucl
- Pions contribute to Symmetry Energy
- Spectral functions of △ and N* Resonances in adiabatic approximation
 - Detailed Balance for Broad Resonances

• A = 2,3 Clusters produced in Multinucleon Collisions

Cluster Break-Up Data used in describing Production

- Solution of Boltzmann Eq
- 1-Ptcle Energies from Energy Functional
 - Volume (incl Momentum), Gradient, Isospin, Coulomb Terms
- Covariance
 - Covariant: Volume (incl Momentum) Term in Energy, Collisions
 - Noncovariant: Gradient, Isospin, Coulomb Terms in Energy
 - Employed (so far) up to 20 GeV/nucl
- Pions contribute to Symmetry Energy
- Spectral functions of △ and N* Resonances in adiabatic approximation
 - Detailed Balance for Broad Resonances
- A = 2,3 Clusters produced in Multinucleon Collisions
 - Cluster Break-Up Data used in describing Production

Danielewicz

• Initial State from Solving Thomas-Fermi Eqs

- Wigner Functions represented in term of Test Particles
- Lattice Hamiltonian (Lenk & Pandharipande)
 - Profile Functions associated with Lattice Nodes
 - Test-Particle Eqs of Motion from the Lattice Hamiltonian
 - Values of Hamiltonian and Net Momentum Conserved
- Collisions, including Multiparticle, between Any Test-Particles within Spatial Cell
- Computational Speed Enhanced processing only Collision No that may be occur within Time-Step
- Occupations f/Pauli Principle: (a) smoothing Test-Particles, in space but not momentum, w/same Profile Functions as f/Lattice Hamiltonian, or (b) fitting deformed local Fermi-D
- Coulomb Potential through Relaxation-Method Solution of Poisson Eq

- Initial State from Solving Thomas-Fermi Eqs
- Wigner Functions represented in term of Test Particles
- Lattice Hamiltonian (Lenk & Pandharipande)
 - Profile Functions associated with Lattice Nodes
 - Test-Particle Eqs of Motion from the Lattice Hamiltonian
 - Values of Hamiltonian and Net Momentum Conserved
- Collisions, including Multiparticle, between Any Test-Particles within Spatial Cell
- Computational Speed Enhanced processing only Collision No that may be occur within Time-Step
- Occupations f/Pauli Principle: (a) smoothing Test-Particles, in space but not momentum, w/same Profile Functions as f/Lattice Hamiltonian, or (b) fitting deformed local Fermi-D
- Coulomb Potential through Relaxation-Method Solution of Poisson Eq

- Initial State from Solving Thomas-Fermi Eqs
- Wigner Functions represented in term of Test Particles
- Lattice Hamiltonian (Lenk & Pandharipande)
 - Profile Functions associated with Lattice Nodes
 - Test-Particle Eqs of Motion from the Lattice Hamiltonian
 - Values of Hamiltonian and Net Momentum Conserved
- Collisions, including Multiparticle, between *Any* Test-Particles within Spatial Cell
- Computational Speed Enhanced processing only Collision No that may be occur within Time-Step
- Occupations f/Pauli Principle: (a) smoothing Test-Particles, in space but not momentum, w/same Profile Functions as f/Lattice Hamiltonian, or (b) fitting deformed local Fermi-D
- Coulomb Potential through Relaxation-Method Solution of Poisson Eq

- Initial State from Solving Thomas-Fermi Eqs
- Wigner Functions represented in term of Test Particles
- Lattice Hamiltonian (Lenk & Pandharipande)
 - Profile Functions associated with Lattice Nodes
 - Test-Particle Eqs of Motion from the Lattice Hamiltonian
 - Values of Hamiltonian and Net Momentum Conserved
- Collisions, including Multiparticle, between Any Test-Particles within Spatial Cell
- Computational Speed Enhanced processing only Collision No that may be occur within Time-Step
- Occupations f/Pauli Principle: (a) smoothing Test-Particles, in space but not momentum, w/same Profile Functions as f/Lattice Hamiltonian, or (b) fitting deformed local Fermi-D
- Coulomb Potential through Relaxation-Method Solution of Poisson Eq

- Initial State from Solving Thomas-Fermi Eqs
- Wigner Functions represented in term of Test Particles
- Lattice Hamiltonian (Lenk & Pandharipande)
 - Profile Functions associated with Lattice Nodes
 - Test-Particle Eqs of Motion from the Lattice Hamiltonian
 - Values of Hamiltonian and Net Momentum Conserved
- Collisions, including Multiparticle, between Any Test-Particles within Spatial Cell
- Computational Speed Enhanced processing only Collision No that may be occur within Time-Step
- Occupations f/Pauli Principle: (a) smoothing Test-Particles, in space but not momentum, w/same Profile Functions as f/Lattice Hamiltonian, or (b) fitting deformed local Fermi-D
- Coulomb Potential through Relaxation-Method Solution of Poisson Eq

- Initial State from Solving Thomas-Fermi Eqs
- Wigner Functions represented in term of Test Particles
- Lattice Hamiltonian (Lenk & Pandharipande)
 - Profile Functions associated with Lattice Nodes
 - Test-Particle Eqs of Motion from the Lattice Hamiltonian
 - Values of Hamiltonian and Net Momentum Conserved
- Collisions, including Multiparticle, between Any Test-Particles within Spatial Cell
- Computational Speed Enhanced processing only Collision No that may be occur within Time-Step
- Occupations f/Pauli Principle: (a) smoothing Test-Particles, in space but not momentum, w/same Profile Functions as f/Lattice Hamiltonian, or (b) fitting deformed local Fermi-D
- Coulomb Potential through Relaxation-Method Solution of Poisson Eq

- Initial State from Solving Thomas-Fermi Eqs
- Wigner Functions represented in term of Test Particles
- Lattice Hamiltonian (Lenk & Pandharipande)
 - Profile Functions associated with Lattice Nodes
 - Test-Particle Eqs of Motion from the Lattice Hamiltonian
 - Values of Hamiltonian and Net Momentum Conserved
- Collisions, including Multiparticle, between Any Test-Particles within Spatial Cell
- Computational Speed Enhanced processing only Collision No that may be occur within Time-Step
- Occupations f/Pauli Principle: (a) smoothing Test-Particles, in space but not momentum, w/same Profile Functions as f/Lattice Hamiltonian, or (b) fitting deformed local Fermi-D
- Coulomb Potential through Relaxation-Method Solution of Poisson Eq

- Initial State from Solving Thomas-Fermi Eqs
- Wigner Functions represented in term of Test Particles
- Lattice Hamiltonian (Lenk & Pandharipande)
 - Profile Functions associated with Lattice Nodes
 - Test-Particle Eqs of Motion from the Lattice Hamiltonian
 - Values of Hamiltonian and Net Momentum Conserved
- Collisions, including Multiparticle, between Any Test-Particles within Spatial Cell
- Computational Speed Enhanced processing only Collision No that may be occur within Time-Step
- Occupations f/Pauli Principle: (a) smoothing Test-Particles, in space but not momentum, w/same Profile Functions as f/Lattice Hamiltonian, or (b) fitting deformed local Fermi-D
- Coulomb Potential through Relaxation-Method Solution of Poisson Eq

Conclusions

Boltzmann Equation

Reaction simulated in terms of a set of semi-phenomenological Boltzmann equations for phase-space distributions *f* of *N*s, π s, Δ s, *N**s, *d*s...:

$$\frac{\partial f}{\partial t} + \frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{p}} \frac{\partial f}{\partial \mathbf{r}} - \frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{r}} \frac{\partial f}{\partial \mathbf{p}} = I$$

where the single-particle energies ϵ are given in terms of the net energy functional $E\{f\}$ by,

$$\epsilon(\mathbf{p}) = \frac{\delta E}{\delta f(\mathbf{p})}$$

In the local cm, the mean potential is $U_{opt} = \epsilon - \epsilon_{kin}$ and $\epsilon_{kin} = \sqrt{p^2 + m^2}$.

Energy Functional

The functional:

$$E_{gr} = \frac{a_{gr}}{\rho_0} \int d\mathbf{r} \left(\nabla \rho\right)^2$$

 $E = E_{vol} + E_{gr} + E_{iso} + E_{Coul}$

where

For covariant volume term, ptcle velocities parameterized in local frame: $v^{*}(p, \rho) = \frac{p}{\sqrt{p^{2} + m^{2} / \left(1 + c \frac{\rho}{\rho_{0}} \frac{1}{(1 + \lambda p^{2}/m^{2})^{2}}\right)^{2}}}$

precluding a supraluminal behavior (PD *et al* PRL81(98)2438), with ρ - baryon density. The 1-ptcle energies are then

$$\epsilon(\boldsymbol{p},
ho) = m + \int_0^{\boldsymbol{p}} d\boldsymbol{p}' \, \boldsymbol{v}^* + \Delta \epsilon(
ho)$$

Parameters in the velocity varied to yield different optical potentials characterized by values of effective mass, $m^* = p_F/v_F$.

U^{opt} [MeV]

Structure Interface

Potential from p-scattering (Hama *et al* PRC41(90)2737) & parameterizations

0.10 0.08 ^{40}Ca $\rho_{\rm p,n}~({\rm fm}^{-3})$ 0.06 0.04 0.02 scattering 0.00 0.10 ²⁰⁸РЬ $\rho_{\rm p,n}~({\rm fm}^{-3})$ 0.08 0.06 0.04 electron 0.02 0.00 8 10 r (fm)

electron scattering and from functional minimization. From E(f) = min:

$$\mathbf{D} = \epsilon \left(\mathbf{p}^{\mathsf{F}}(\rho) \right) - 2 \, \mathbf{a}_{gr} \, \nabla^2 \left(\frac{\rho}{\rho_0} \right) - \mu$$

프 🖌 🖌 프

> Thomas-Fermi eq.

Danielewicz

Finer Details of Thomas-Fermi Solutions

Neutron skin: macroscopic theory vs Thomas-Fermi w/sym energy variation

Practical Aspects of Dynamics

Pseudoparticle representation for the phase-space distribution

$$f(\mathbf{r},\mathbf{p},t) = \frac{1}{N} \sum_{i=1}^{A \cdot N} \delta(\mathbf{r} - \mathbf{r}_i(t)) \,\delta(\mathbf{p} - \mathbf{p}_i(t))$$

Space divided in cells of volume ΔV . Lattice hamiltonian (Lenk&Pandharipande PRC39(89)2242) from energy densities at cell nodes μ

$$\boldsymbol{E} = \Delta \boldsymbol{V} \sum_{\nu} \boldsymbol{e}_{\mu} \{ \boldsymbol{f}_{\mu} \}$$

where e is energy density and

$$f_{\nu} = rac{1}{\mathcal{N}} \sum_{i} S(\mathbf{r}_{\nu} - \mathbf{r}_{i}) \, \delta(\mathbf{p} - \mathbf{p}_{i}(t))$$

S localized profile function and

$$\dot{\mathbf{r}}_i(t) = rac{\partial E}{\partial \mathbf{p}_i}$$
 $\dot{\mathbf{p}}_i(t) = -rac{\partial E}{\partial \mathbf{r}_i}$

integrate the l.h.s. of the Boltzmann eq. (Vlasov).

э

Monopole Oscillations

Pb Oscillations

A D > A B >

3 → < 3

 \Rightarrow K = (225 - 240) MeV

Collision Rates

Collision rate incorporates effects of interactions of different particle numbers:

 $I=I_2+I_3+\ldots$

2-body collision rate

$$I_2 = \int |\mathcal{M}_{12\to\cdots}|^2 \,\delta(\mathbf{P}'-\mathbf{P})\,\delta(E'-E)\,f_1\,f_2\,(1-f_1')\,\cdots$$

3-body collision rate

$$I_3 = \int |\mathcal{M}_{123 \to \cdots}|^2 \, \delta(\mathbf{P}' - \mathbf{P}) \, \delta(E' - E) \, f_1 \, f_2 \, f_3 \, \cdots$$

3 nucleons required to form a deuteron, 4 nucleons to form a triton . . .

∃ ► < ∃ ►</p>

3-Body Collisions

Net 2-body collision rate:

$$\int \mathrm{d}\boldsymbol{P}_f \left| \mathcal{M}_{12 \to \dots} \right|^2 \delta(\mathbf{P}' - \mathbf{P}) \, \delta(\boldsymbol{E}' - \boldsymbol{E}) = \sigma_{12} \, \boldsymbol{v}_{12}$$

Net 3-body collision rate:

Deuteron Production

Detailed balance:

$$\overline{|\mathcal{M}^{\textit{npN} \rightarrow \textit{Nd}}|^2} = \overline{|\mathcal{M}^{\textit{Nd} \rightarrow \textit{Nnp}}|^2} \propto d\sigma^{\textit{Nd} \rightarrow \textit{Nnp}}$$

Thus, production can be described in terms of breakup.

$$\mathrm{d}\sigma^{\textit{Nd}
ightarrow\textit{Nnp}}\propto\sigma_{\textit{np}}\,|\phi_{\textit{d}}(\pmb{p})|^2\propto\sigma_{\textit{np}}\,\mathcal{V}_{\textit{N}}$$

Modified impulse approximation employed.

(PD&Bertsch NPA533(91)712)

Tritons and helions produced in a similar manner in 4-nucleon collisions.

Low-Energy Comparison to INDRA

¹²⁹Xe+¹¹⁹Sn at 50 MeV/nucleon points - data Gorio EPJA7(00)245

histograms calculations Kuhrts PRC63(01)034605

-< ≣ > <

High-Energy Inclusive Data

Potential Ambiguity in Conclusions

When observables are sensitive to bulk properties, they are usually sensitive to few properties at once.

 \Rightarrow For progress, one needs to look for dedicated observables sensitive to one particular observable.

SM - strong dependence of ϵ on p

H - strong dependence of ϵ on ρ

★ E > ★ E

Conclusions

Stopping: σ_{NN} & Viscosity

- Central symmetric collisions from 0.09 to 1.5 GeV/u
- Stopping observables such as $varxz = \frac{\Delta y_x}{\Delta y_z}$
 - Δy_z
- Free CS overestimates stopping
- Different CS modifications tried
- $\bullet\,$ Tempered CS works best $\sigma \lesssim \nu\,\rho^{-2/3}$

with $\nu \sim 0.7$

beam energy fee () menes

→ E → < E →</p>

Reisdorf *et al* [FOPI] PRL92(04)232301 NPA848(10)366

Conclusions o

Viscosity-to-Entropy Ratio

Viscosity from reduced in-medium cross-sections RHIC: Bernhard *et al* PRC91(15)054910

э

Momentum Dependence of Mean Field

Nucleon-nucleus scattering gives access to the mean field at densities $\rho \lesssim \rho_0$ Hama *et al* PRC41(90)2737

Evidence for momentum dependence in reactions? Access to momentum dependence at $\rho > \rho_0$?

$$U^{opt} = \epsilon - \epsilon^{kin} \qquad \mathbf{v} = \frac{\partial \epsilon}{\partial \mathbf{p}}$$
$$\mathbf{v} = \frac{\partial \epsilon^{kin}}{\partial p} + \frac{\partial U^{opt}}{\partial p} = \mathbf{v}^{kin} + \frac{\partial U^{opt}}{\partial p} > \mathbf{v}^{kin}$$
How to assess the in-medium velocities in central reactions

Danielewicz

data: KaOS Brill *et al* ZPA355(96)61 More ptcles escape in direction perpendicular to the reaction plane

Other beam energies?? KaOS 700 MeV/nucleon Bi + Bi b=8.6fm 3 m*/m=0.65 0.70 2 hard no mo-dep soft e^N standard mo-dep 0 70 frozen 2 mo-dep 200 400 600 800 1000 p^{\perp} [MeV/c] \leftarrow transverse mome ceases to change above ρ_0 : $v^*(\rho, \rho) = v^*(\rho, \rho_0)$ for $\rho > \rho_0$.

Supranormal Densities?

Are we just testing the momentum dependence in the vicinity of ρ_0 ?? Test: Max. ρ in midperipheral collisions at 400, 700 and 1000 MeV/nucleon: $\rho/\rho_0 \approx 1.85$, 2.20 and 2.40, respectively. But do they matter?? \Rightarrow Let us make the momentum dependence at $\rho > \rho_0$ follow dependence at ρ_0 . MF where velocity

Danielewicz

Why Sensitivity to $\rho > \rho_0$ in Transverse Directions??

Contour plots of the density in the reaction plane (bottom) and in the plane \perp to the beam (top) for Bi+Bi at 400MeV/u:

Fast ptcles emitted transversally, around $t \sim 15$ fm/c, directlyfrom high- ρ matter!PD NPA673(00)375

Comparison to Microscopic Calculations Optical-potential $U = \epsilon - \epsilon_{kin}$ compared to microscopic

Dirac-Brueckner-Hartree-Fock Machleit *et al.* PRC48(93)2707

Lombardo et al. PLB334(94)12

Central Reactions

Reaction plane: plane in which the centers of initial nuclei lie.

Spectators: nucleons in the reaction periphery, little disturbed by the reaction.

Participants: nucleons that dive into compressed excited matter.

Nuclear EOS deduced from the features of collective flow in reactions of heavy nuclei.

Collective flow: motion characterized by significant space-momentum correlations, deduced from momentum distributions of particles emitted in the reactions.

Euler eq. in $\vec{v} = 0$ frame:

$$m_N \rho \frac{\partial}{\partial t} \vec{v} = -\vec{\nabla} p$$

< < >> < </>

EOS and Flow Anisotropies

EOS assessed through reaction plane anisotropies characterizing particle collective motion.

Hydro? Euler eq. in $\vec{v} = 0$ frame: $\left[\frac{m_N \rho}{\partial t} \vec{v} = -\vec{\nabla} \rho \right]$ where ρ - pressure. From features of v, knowing Δt , we may learn about ρ in relation to ρ . Δt fixed by spectator motion.

For high *p*, expansion rapid and much affected by spectators.

For low *p*, expansion sluggish and completes after spectators gone.

Simulation by L. Shi

Bottom panels: density (up to $3\rho_0$) in reaction plane + flow $\square \land \square \land \square \land \square \land$

Sideward Flow Systematics

Deflection of forwards and backwards moving particles away from the beam axis, within the reaction plane.

Au + Au Flow Excitation Function

Note: K used as a label

PD, Lacey & Lynch

The sideward-flow observable results from dynamics that spans a ρ -range varying with the incident energy.

2nd-Order or Elliptic Flow

Another anisotropy, studied at midrapidity: $v_2 = \langle \cos 2\phi \rangle$, where ϕ is azimuthal angle relative to reaction plane.

프 🖌 🖌 프

Conclusions

Subthreshold Meson (K/ π) Production

Ratio of kaons per participant nucleon in Au+Au collisions to kaons in C+C collisions vs beam energy

filled diamonds: KaoS data

open symbols: theory Fuchs *et al*

Kaon yield sensitive to EOS because multiple interactions needed for production, testing density. The data suggest a relatively soft EOS.

2.5

2

1.5

1

Å

Ā

²⁰⁹Bi+²⁰⁹Bi 400 MeV

300 400 500 600 700 800

Sensitivity of Elliptic Flow to m^*/m and K

and changing m^*/m

 $m^*/m = 0.7$ and changing *K*

100 200

K=300MeV

270MeV

240MeV

210MeV KaoS

p_T [GeV/c]

Hysteresis in both cases due to competition between density and momentum dependence

Sensitivity of M_{π} to Incompressibility K

Raising *K* Allows to Describe Both M_{π} and v_2 !

Bands for K = (240 - 300) MeV & optimal m^*/m

 \rightarrow Constraints on EOS, at moderately supranormal densities, à la LeFèvre *et al*

Energy Per Nucleon

Symmetric Matter

イロト イポト イヨト イヨト

Pressure

Symmetric Matter

Danielewicz

ъ

Conclusions

Principal Features Again

- Solution of Boltzmann Eq
- 1-Ptcle Energies from Energy Functional
 - Volume (incl Momentum), Gradient, Isospin, Coulomb Terms
- Covariance
 - Covariant: Volume (incl Momentum) Term in Energy, Collisions
 - Noncovariant: Gradient, Isospin, Coulomb Terms in Energy
 - Employed (so far) up to 20 GeV/nucl
- Pions contribute to Symmetry Energy
- Spectral functions of △ and N* Resonances in adiabatic approximation
 - Detailed Balance for Broad Resonances
- A = 2,3 Clusters produced in Multinucleon Collisions
 - Cluster Break-Up Data used in describing Production

Supported by National Science Foundation under Grant US_PHY-1403906

