Bayesian Inference for Symmetry Energy

Pawel Danielewicz,¹ Pardeep Singh^{1,2} and Jenny Lee³

¹Natl Superconducting Cyclotron Lab, Michigan State U, ²Deenbandhu Chhotu Ram U Science & Techn, Murthal, India and ³U of Hong Kong

Transport 2017: International Workshop on Transport Simulations for Heavy Ion Collisions under Controlled Conditions

FRIB-MSU, East Lansing, Michigan, March 27 - 30, 2017

Charge symmetry: invariance of nuclear interactions under $n \leftrightarrow p$ interchange

An isoscalar quantity *F* does not change under $n \leftrightarrow p$ interchange. E.g. nuclear energy. Expansion in asymmetry $\eta = (N - Z)/A$, for smooth *F*, yields even terms only: $F(\eta) = F_0 + F_2 \eta^2 + F_4 \eta^4 + \dots$

An isovector quantity *G* changes sign. Example: $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$. Expansion with odd terms only: $G(\eta) = G_1 \eta + G_3 \eta^3 + \dots$

Note: $G/\eta = G_1 + G_3 \eta^2 + \dots$

In nuclear practice, analyticity requires shell-effect averaging! Charge invariance: invariance of nuclear interactions under rotations in *n-p* space

イロト イヨト イヨト イ

Charge symmetry: invariance of nuclear interactions under $n \leftrightarrow p$ interchange

An isoscalar quantity *F* does not change under $n \leftrightarrow p$ interchange. E.g. nuclear energy. Expansion in asymmetry $\eta = (N - Z)/A$, for smooth *F*, yields even terms only: $F(\eta) = F_0 + F_2 \eta^2 + F_4 \eta^4 + \dots$

An isovector quantity *G* changes sign. Example: $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$. Expansion with odd terms only: $G(\eta) = G_1 \eta + G_3 \eta^3 + \dots$

Note: $G/\eta = G_1 + G_3 \eta^2 + ...$

In nuclear practice, analyticity requires shell-effect averaging! Charge invariance: invariance of nuclear interactions under rotations in *n-p* space

イロト イヨト イヨト イ

Charge symmetry: invariance of nuclear interactions under $n \leftrightarrow p$ interchange

An isoscalar quantity *F* does not change under $n \leftrightarrow p$ interchange. E.g. nuclear energy. Expansion in asymmetry $\eta = (N - Z)/A$, for smooth *F*, yields even terms only: $F(\eta) = F_0 + F_2 \eta^2 + F_4 \eta^4 + \dots$

An isovector quantity *G* changes sign. Example: $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$. Expansion with odd terms only: $G(\eta) = G_1 \eta + G_3 \eta^3 + \dots$

Note: $G/\eta = G_1 + G_3 \eta^2 + ...$

In nuclear practice, analyticity requires shell-effect averaging!

Charge invariance: invariance of nuclear interactions under rotations in *n-p* space

イロト イヨト イヨト イ

Charge symmetry: invariance of nuclear interactions under $n \leftrightarrow p$ interchange

An isoscalar quantity *F* does not change under $n \leftrightarrow p$ interchange. E.g. nuclear energy. Expansion in asymmetry $\eta = (N - Z)/A$, for smooth *F*, yields even terms only: $F(\eta) = F_0 + F_2 \eta^2 + F_4 \eta^4 + \dots$

An isovector quantity *G* changes sign. Example: $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$. Expansion with odd terms only: $G(\eta) = G_1 \eta + G_3 \eta^3 + \dots$

Note: $G/\eta = G_1 + G_3 \eta^2 + ...$

In nuclear practice, analyticity requires shell-effect averaging! Charge invariance: invariance of nuclear interactions under rotations in *n-p* space

(日)

Net density $\rho(r) = \rho_n(r) + \rho_p(r)$ is isoscalar \Rightarrow weakly depends on (N - Z) for given *A*. [Coulomb suppressed...]

 $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$ isovector but $A \rho_{np}(r)/(N-Z)$ isoscalar! A/(N-Z) normalizing factor global...Similar local normalizing factor, in terms of intense quantities, $2a_a^V/\mu_a$, where $a_a^V \equiv S(\rho_0)$ Isoscalar formfactor for isovector density:

$$ho_a(r) = rac{2a_a^V}{\mu_a} \left[
ho_n(r) -
ho_
ho(r)
ight]$$

Normal matter: $\rho_a = \rho_0$. Both $\rho(r) \& \rho_a(r)$ weakly depend on η !

In any nucleus:

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

where $\rho(r) \& \rho_a(r)$ have universal features! (subject to shell effects, ρ 's as dynamic vbles: Hohenberg-Kohn function

Net density $\rho(r) = \rho_n(r) + \rho_p(r)$ is isoscalar \Rightarrow weakly depends on (N - Z) for given A. [Coulomb suppressed...]

 $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$ isovector but $A \rho_{np}(r)/(N-Z)$ isoscalar! A/(N-Z) normalizing factor global... Similar local normalizing factor, in terms of intense quantities, $2a_a^V/\mu_a$, where $a_a^V \equiv S(\rho_0)$

Isoscalar formfactor for isovector density:

$$\rho_a(r) = \frac{2a_a^V}{\mu_a} \left[\rho_n(r) - \rho_p(r) \right]$$

Normal matter: $\rho_a = \rho_0$. Both $\rho(r) \& \rho_a(r)$ weakly depend on η !

In any nucleus:

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

where $\rho(r) \& \rho_a(r)$ have universal features! (subject to shell effects, ρ 's as dynamic vbles: Hohenberg-Kohn function

Net density $\rho(r) = \rho_n(r) + \rho_p(r)$ is isoscalar \Rightarrow weakly depends on (N - Z) for given A. [Coulomb suppressed...]

 $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$ isovector but $A \rho_{np}(r)/(N-Z)$ isoscalar! A/(N-Z) normalizing factor global... Similar local normalizing factor, in terms of intense quantities, $2a_a^V/\mu_a$, where $a_a^V \equiv S(\rho_0)$ Isoscalar formfactor for isovector density:

Normal matter: $\rho_a = \rho_0$. Both $\rho(r) \& \rho_a(r)$ weakly depend on η !

In any nucleus:

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

where $\rho(r) \& \rho_a(r)$ have universal features! (subject to shell effects, ρ 's as dynamic vbles: Hohenberg-Kohn function

Net density $\rho(r) = \rho_n(r) + \rho_p(r)$ is isoscalar \Rightarrow weakly depends on (N - Z) for given *A*. [Coulomb suppressed...]

 $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$ isovector but $A \rho_{np}(r)/(N-Z)$ isoscalar! A/(N-Z) normalizing factor global... Similar local normalizing factor, in terms of intense quantities, $2a_a^V/\mu_a$, where $a_a^V \equiv S(\rho_0)$ Isoscalar formfactor for isovector density:

Normal matter: $\rho_a = \rho_0$. Both $\rho(r) \& \rho_a(r)$ weakly depend on η !

In any nucleus:

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

where $\rho(r) \& \rho_a(r)$ have universal features! (subject to shell effects)

No shell-effects, ρ 's as dynamic vbles: Hohenberg-Kohn function

Net density $\rho(r) = \rho_n(r) + \rho_p(r)$ is isoscalar \Rightarrow weakly depends on (N - Z) for given A. [Coulomb suppressed...]

 $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$ isovector but $A \rho_{np}(r)/(N-Z)$ isoscalar! A/(N-Z) normalizing factor global... Similar local normalizing factor, in terms of intense quantities, $2a_a^V/\mu_a$, where $a_a^V \equiv S(\rho_0)$ Isoscalar formfactor for isovector density:

$$ho_{a}(r) = rac{2a_{a}^{V}}{\mu_{a}}\left[
ho_{n}(r) -
ho_{
ho}(r)
ight]$$

Normal matter: $\rho_a = \rho_0$. Both $\rho(r) \& \rho_a(r)$ weakly depend on $\eta!$

In any nucleus:

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

where $\rho(r) \& \rho_a(r)$ have universal features! (subject to shell effects) No shell-effects, ρ 's as dynamic vbles: Hohenberg-Kohn function

Introduction	Universal Densities?	Data Analysis	Bayesian Inference	Conclusions
	000			

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

Net density ρ usually parameterized w/Fermi function $\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r-R}{d})} \quad \text{with} \quad R = r_0 A^{1/3}$

Isovector density ρ_a ?? Related to $S(\rho)$!

In uniform matter

 $\mu_{a} = \frac{\partial E}{\partial (N-Z)} = \frac{\partial [S(\rho) \rho_{np}^{2}/\rho]}{\partial \rho_{np}} = \frac{2 S(\rho)}{\rho} \rho_{np}$

$$\Rightarrow \quad \rho_a = \frac{2a_a^V}{\mu_a} \, \rho_{np} = \frac{a_a^V \, \rho}{S(\rho)}$$

 \Rightarrow Skyrme-Hartree-Fock densities?

Introduction	Universal Densities?	Data Analysis 000000000000000	Bayesian Inference	Conclusions o

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

Net density ρ usually parameterized w/Fermi function $\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r-R}{2})} \quad \text{with} \quad R = r_0 A^{1/3}$

Isovector density ρ_a ?? Related to $S(\rho)$!

$$\Rightarrow \quad \rho_a = \frac{2a_a^V}{\mu_a} \, \rho_{np} = \frac{a_a^V \, \rho}{S(\rho)}$$

Introduction	Universal Densities?	Data Analysis	Bayesian Inference	Conclusions o

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

Net density ρ usually parameterized w/Fermi function $\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r-R}{d})} \quad \text{with} \quad R = r_0 A^{1/3}$

Isovector density ρ_a ?? Related to $S(\rho)$! In uniform matter

 $\mu_{a} = \frac{\partial E}{\partial (N - Z)} = \frac{\partial [S(\rho) \rho_{np}^{2} / \rho]}{\partial \rho_{np}} = \frac{2 S(\rho)}{\rho} \rho_{np}$

$$\Rightarrow \quad \rho_a = \frac{2a_a^V}{\mu_a} \, \rho_{np} = \frac{a_a^V \, \rho}{S(\rho)}$$

 \Rightarrow Skyrme-Hartree-Fock densities'

Introduction	Universal Densities?	Data Analysis	Bayesian Inference	Conclusions o

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

Net density ρ usually parameterized w/Fermi function $\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r-R}{d})} \quad \text{with} \quad R = r_0 A^{1/3}$

Isovector density ρ_a ?? Related to $S(\rho)$! In uniform matter

 $\mu_{a} = \frac{\partial E}{\partial (N - Z)} = \frac{\partial [S(\rho) \rho_{np}^{2} / \rho]}{\partial \rho_{np}} = \frac{2 S(\rho)}{\rho} \rho_{np}$

$$\Rightarrow \quad \rho_a = \frac{2a_a^V}{\mu_a} \, \rho_{np} = \frac{a_a^V \, \rho}{S(\rho)}$$

⇒ Skyrme-Hartree-Fock densities?

Introduction

Skyrme-Hartree-Fock Densities

 $\begin{aligned} \rho &= \rho_n + \rho_p \\ \rho_3 &\propto (\rho_n - \rho_p) \\ \rho_\perp &\equiv \rho_a : \\ \text{Coulomb-corrected } \rho_3 \\ \text{density f/pure isospin} \\ \text{state} \end{aligned}$

 \leftrightarrow same interaction

 \updownarrow same nucleus

Surface ~same f/every nucleus

The higher *L*, the farther isovector & isoscalar surfaces split apart

Symmetry Energy

Danielewicz, Singh, Lee

Introduction

Universal Densities?

Data Analysis

Bayesian Inference

Skyrme-Hartree-Fock Densities

 $\rho = \rho_n + \rho_p$ $\rho_3 \propto (\rho_n - \rho_p)$ $\rho_\perp \equiv \rho_a :$ Coulomb-corrected ρ_3 density f/pure isospin state

 $\leftrightarrow \text{ same interaction}$

 \updownarrow same nucleus

Surface ~same f/every nucleus

The higher *L*, the farther isovector & isoscalar surfaces split apart

Symmetry Energy

Danielewicz, Singh, Lee

Introduction

Skyrme-Hartree-Fock Densities

 $\begin{aligned} \rho &= \rho_n + \rho_p \\ \rho_3 &\propto (\rho_n - \rho_p) \\ \rho_\perp &\equiv \rho_a : \\ \text{Coulomb-corrected } \rho_3 \\ \text{density f/pure isospin} \\ \text{state} \end{aligned}$

 \leftrightarrow same interaction

 \updownarrow same nucleus

Surface ~same f/every nucleus

The higher *L*, the farther isovector & isoscalar surfaces split apart

Nucleon (Lane) optical potential in isospin space:

$$U=U_0+\frac{4\tau T}{A} U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau_- T_+}{A} U_1$ Elastic scattering dominated by U_0

Geometry usually assumed the same for U_0 and U_1

e.g. Koning & Delaroche NPA713(03)231

?Isovector aura ΔR from comparison of elastic and quasielasti

Nucleon (Lane) optical potential in isospin space:

$$U=U_0+\frac{4\tau T}{A} U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau_- T_+}{A} U_1$ Elastic scattering dominated by U_0

Geometry usually assumed the same for U_0 and U_1

e.g. Koning & Delaroche NPA713(03)231

?Isovector aura ΔR from comparison of elastic and quasielasti

Nucleon (Lane) optical potential in isospin space:

$$U=U_0+\frac{4\tau T}{A} U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau - I_+}{A} U_1$ Elastic scattering dominated by U_0

Geometry usually assumed the same for U_0 and U_1

e.g. Koning & Delaroche NPA713(03)231

?Isovector aura ΔR from comparison of elastic and quasielasti

Nucleon (Lane) optical potential in isospin space:

$$U=U_0+\frac{4\tau\,\boldsymbol{T}}{A}\,U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau_- T_+}{A} U_1$ Elastic scattering dominated by U_0 Quasielastic governed by U_1 Geometry usually assumed the same for U_0 and U_1 e.g. Koning & Delaroche NPA713(03)231 ?Isovector aura ΔR from comparison of elastic and quasiela

Nucleon (Lane) optical potential in isospin space:

$$U=U_0+\frac{4\tau\,\boldsymbol{T}}{A}\,U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau_- T_+}{A} U_1$ Elastic scattering dominated by U_0 Quasielastic governed by U_1

Geometry usually assumed the same for U_0 and U_1 e.g. Koning & Delaroche NPA713(03)231 ?Isovector aura ΔR from comparison of elastic and quasiela (p,n)-to-IAS scattering?

Nucleon (Lane) optical potential in isospin space:

$$U=U_0+\frac{4\tau T}{A} U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau_- T_+}{A} U_1$ Elastic scattering dominated by U_0

Quasielastic governed by U_1

Geometry usually assumed the same for U_0 and U_1

e.g. Koning & Delaroche NPA713(03)231

?Isovector aura ΔR from comparison of elastic and quasielasti (p,n)-to-IAS scattering?

Nucleon (Lane) optical potential in isospin space:

$$U=U_0+\frac{4\tau T}{A} U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau_- T_+}{A} U_1$ Elastic scattering dominated by U_0 Quasielastic governed by U_1

Geometry usually assumed the same for U_0 and U_1

e.g. Koning & Delaroche NPA713(03)231

?Isovector aura ΔR from comparison of elastic and quasielastic (p,n)-to-IAS scattering?

Expectations on Isovector Aura?

Much Larger Than Neutron! Surface radius $R \simeq \sqrt{\frac{5}{3}} \langle r^2 \rangle^{1/2}$ rms neutron skin $\langle r^2 \rangle_{\rho_n}^{1/2} - \langle r^2 \rangle_{\rho_p}^{1/2}$ $\simeq 2 \frac{N-Z}{A} \left[\langle r^2 \rangle_{\rho_n-\rho_p}^{1/2} - \langle r^2 \rangle_{\rho_n+\rho_p}^{1/2} \right]$ rms isovector aura

Estimated $\Delta R \sim 3\left(\langle r^2 \rangle_{\rho_n}^{1/2} - \langle r^2 \rangle_{\rho_p}^{1/2}\right)$ for ⁴⁸Ca/²⁰⁸Pb! Even before consideration of Coulomb effects that further enhances difference!

Introduction	Universal Densities?	Data Analysis	Bayesian Inference	Conclusions
		000000000000000000000000000000000000000		

Aura

Historically Kirlian/Aura Photography

Danielewicz, Singh, Lee

Direct Reaction Primer

DWBA:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\propto \Big|\int\mathrm{d}r\,\Psi_{f}^{*}\,U_{1}\,\Psi_{i}\Big|^{2}$$

- Oscillations: 2-side interference/source size
- Fall-off: softness of source
- Filling of minimae: imaginary/real contributions, spin-orbit

Danielewicz, Singh, Lee

Potentials Fit to Elastic in Quasielastic

E.g. Koning-Delaroche NPA713(03)231 same radii for neutrons/protons, isoscalar/isovector, focus on p elastic

Danielewicz, Singh, Lee

Impact of U-Radii on (p,n) Cross Section

DWBA

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \propto \Big| \int \mathrm{d}r \, \Psi_p^*(r) \, U_1(r) \, \Psi_n(i) \Big|^2$$

Isoscalar radius responsible for holes in wavefunctions $\boldsymbol{\Psi}$

Isovector radius responsible for region where (p,n) conversion can occur

Modified Koning-Delaroche Fits: ⁴⁸Ca In Koning-Delaroche: $R_{0,1} = R + \Delta R_{0,1}$ $a_{0,1} = a + \Delta a_{0,1}$

S NSCL

Danielewicz, Singh, Lee

Danielewicz, Singh, Lee

Modified Koning-Delaroche Fits: ¹²⁰Sn In Koning-Delaroche: $R_{0,1} = R + \Delta R_{0,1}$ $a_{0,1} = a + \Delta a_{0,1}$

S NSCL

Danielewicz, Singh, Lee

In Koning-Delaroche: $R_{0,1} = R + \Delta R_{0,1}$

 $a_{0,1} = a + \Delta a_{0,1}$

Bayesian Inference

Probability density in parameter space p(x) updated as experimental data on observables *E*, value \overline{E} with error σ_E , get incorporated

Probability p is updated iteratively, starting with prior p_{prior} p(a|b) - conditional probability

$$p(x|\overline{E}) \propto p_{\text{prior}}(x) \int dE \, \mathrm{e}^{-rac{(E-\overline{E})^2}{2\sigma_E^2}} p(E|x)$$

For large number of incorporated data, p becomes independent of $p_{\rm prior}$

In here, p_{prior} and p(E|x) are constructed from all Skyrme ints in literature, and their linear interpolations. p_{prior} is made uniform in plane of symmetry-energy parameters (L, a_a^V)

ヘロト ヘアト ヘビト ヘビ

Bayesian Inference

Probability density in parameter space p(x) updated as experimental data on observables *E*, value \overline{E} with error σ_E , get incorporated

Probability p is updated iteratively, starting with prior p_{prior} p(a|b) - conditional probability

$$p(x|\overline{E}) \propto p_{\text{prior}}(x) \int dE \, \mathrm{e}^{-rac{(E-\overline{E})^2}{2\sigma_E^2}} p(E|x)$$

For large number of incorporated data, p becomes independent of $p_{\rm prior}$

In here, p_{prior} and p(E|x) are constructed from all Skyrme ints in literature, and their linear interpolations. p_{prior} is made uniform in plane of symmetry-energy parameters (L, a_a^V)

Raw Skyrme Parametrizations in (a_a^V, L) Plane

148 Skyrme parametrizations

Skyrme Interpolations in (a_a^V, L) Plane

 E_{IAS}^* - from excitations to isobaric analog states in PD&Lee NPA922(14)1

 E_{IAS}^* - from excitations to isobaric analog states in PD&Lee NPA922(14)1

Oscillations in prior of no significance

- represent availability of Skyrme parametrizations

 E_{IAS}^* - from excitations to isobaric analog states in PD&Lee NPA922(14)1

Oscillations in prior of no significance

- represent availability of Skyrme parametrizations

- Symmetry-energy polarizes nuclear densities, pushing isovector density out to region of low isoscalar density
- For large *A*, displacement of isovector relative to isoscalar surface is expected to be roughly independent of nucleus and depend on slope of symmetry energy
- Surface displacement can be studied in comparative analysis of data on elastic scattering and quasielastic charge-exchange reactions
- Such an analysis produces thick isovector aura $\Delta R \sim 0.9 \text{ fm}!$
- Symmetry energy is stiff! $L = (70 - 100) \text{ MeV}, a_a^V = (33.5 - 36.5) \text{ MeV}$ at 68% level

PD&Lee NPA818(09)36 NPA922(14)1; PD, Singh et al US PHY-1403906 + Indo-US Grant

Symmetry Energy

- Symmetry-energy polarizes nuclear densities, pushing isovector density out to region of low isoscalar density
- For large *A*, displacement of isovector relative to isoscalar surface is expected to be roughly independent of nucleus and depend on slope of symmetry energy
- Surface displacement can be studied in comparative analysis of data on elastic scattering and quasielastic charge-exchange reactions
- Such an analysis produces thick isovector aura $\Delta R \sim 0.9 \text{ fm}!$
- Symmetry energy is stiff! $L = (70 - 100) \text{ MeV}, a_a^V = (33.5 - 36.5) \text{ MeV}$ at 68% leve

PD&Lee NPA818(09)36 NPA922(14)1; PD, Singh *et al* US PHY-1403906 + Indo-US Grant

Symmetry Energy

- Symmetry-energy polarizes nuclear densities, pushing isovector density out to region of low isoscalar density
- For large *A*, displacement of isovector relative to isoscalar surface is expected to be roughly independent of nucleus and depend on slope of symmetry energy
- Surface displacement can be studied in comparative analysis of data on elastic scattering and quasielastic charge-exchange reactions
- Such an analysis produces thick isovector aura $\Delta R \sim 0.9 \, \text{fm}!$
- Symmetry energy is stiff! $L = (70 - 100) \text{ MeV}, a_a^V = (33.5 - 36.5) \text{ MeV}$ at 68% lev

PD&Lee NPA818(09)36 NPA922(14)1; PD, Singh *et al* US PHY-1403906 + Indo-US Grant

- Symmetry-energy polarizes nuclear densities, pushing isovector density out to region of low isoscalar density
- For large *A*, displacement of isovector relative to isoscalar surface is expected to be roughly independent of nucleus and depend on slope of symmetry energy
- Surface displacement can be studied in comparative analysis of data on elastic scattering and quasielastic charge-exchange reactions
- Such an analysis produces thick isovector aura $\Delta R \sim 0.9 \, \text{fm!}$
- Symmetry energy is stiff! L = (70-100) MeV, a^V_a = (33.5-36.5) MeV at 68% level

 PD&Lee NPA818(09)36 NPA922(14)1; PD, Singh *et al* US PHY-1403906 + Indo-US Grant

- Symmetry-energy polarizes nuclear densities, pushing isovector density out to region of low isoscalar density
- For large *A*, displacement of isovector relative to isoscalar surface is expected to be roughly independent of nucleus and depend on slope of symmetry energy
- Surface displacement can be studied in comparative analysis of data on elastic scattering and quasielastic charge-exchange reactions
- Such an analysis produces thick isovector aura $\Delta R \sim 0.9 \, \text{fm!}$
- Symmetry energy is stiff! $L = (70 - 100) \text{ MeV}, a_a^V = (33.5 - 36.5) \text{ MeV}$ at 68% level

PD&Lee NPA818(09)36 NPA922(14)1; PD, Sing US PHY-1403906 + Indo-US Grant

- Symmetry-energy polarizes nuclear densities, pushing isovector density out to region of low isoscalar density
- For large *A*, displacement of isovector relative to isoscalar surface is expected to be roughly independent of nucleus and depend on slope of symmetry energy
- Surface displacement can be studied in comparative analysis of data on elastic scattering and quasielastic charge-exchange reactions
- Such an analysis produces thick isovector aura $\Delta R \sim 0.9 \, \text{fm!}$
- Symmetry energy is stiff! L = (70-100) MeV, a^V_a = (33.5-36.5) MeV at 68% level

 PD&Lee NPA818(09)36 NPA922(14)1; PD, Singh *et al*

US PHY-1403906 + Indo-US Grant

ヘロト ヘヨト ヘヨト