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Introduction Universal Densities? Data Analysis Bayesian Inference Conclusions

Charge Symmetry & Charge Invariance
Charge symmetry: invariance of nuclear interactions under
n↔ p interchange
An isoscalar quantity F does not change under n↔ p
interchange. E.g. nuclear energy. Expansion in asymmetry
η = (N − Z )/A, for smooth F , yields even terms only:

F (η) = F0 + F2 η
2 + F4 η

4 + . . .

An isovector quantity G changes sign. Example:
ρnp(r) = ρn(r)− ρp(r). Expansion with odd terms only:

G(η) = G1 η + G3 η
3 + . . .

Note: G/η = G1 + G3 η
2 + . . ..

In nuclear practice, analyticity requires shell-effect averaging!
Charge invariance: invariance of nuclear interactions under
rotations in n-p space
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Charge Symmetry & Charge Invariance
Charge symmetry:
n↔ p invariance Isobars: Nuclei with the same A

Charge invariance:
symmetry under
rotations in
n-p space
Isospin doublets

p : (τ, τz) = (1
2 ,

1
2)

n : (τ, τz) = (1
2 ,−

1
2)

Net isospin

~T =
A∑

i=1

~τi

T = 3
2 , . . . T = 1

2 ,
3
2 , . . . T = 3

2 , . . .

Nuclear states: (T ,Tz), T ≥ |Tz | = 1
2 |N − Z |
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Energy in Uniform Matter
E
A

(ρn, ρp) =
E0

A
(ρ) + S(ρ)

(ρn − ρp

ρ

)2
+O(. . .4)

symmetric matter (a)symmetry energy ρ = ρn + ρp

E0

A
(ρ) = −aV +

K
18

(ρ− ρ0

ρ0

)2
+ . . . S(ρ) = aV

a +
L
3
ρ− ρ0

ρ0
+ . . .

Known: aa ≈ 16 MeV K ∼ 235 MeV Unknown: aV
a ? L ?
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Isoscalar and Isovector Densities
Net density ρ(r) = ρn(r) + ρp(r) is isoscalar⇒ weakly depends
on (N − Z ) for given A. [Coulomb suppressed. . . ]

ρnp(r) = ρn(r)− ρp(r) isovector but A ρnp(r)/(N − Z ) isoscalar!
A/(N − Z ) normalizing factor global. . . Similar local normalizing
factor, in terms of intense quantities, 2aV

a /µa, where aV
a ≡ S(ρ0)

Isoscalar formfactor for isovector density:

ρa(r) =
2aV

a
µa

[ρn(r)− ρp(r)]

Normal matter: ρa = ρ0. Both ρ(r) & ρa(r) weakly depend on η!

In any nucleus:
ρn,p(r) =

1
2
[
ρ(r)± µa

2aV
a
ρa(r)

]
where ρ(r) & ρa(r) have universal features! (subject to shell effects)
No shell-effects, ρ’s as dynamic vbles: Hohenberg-Kohn functional
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Isovector Density

ρn,p(r) =
1
2
[
ρ(r)± µa

2aV
a
ρa(r)

]
Net density ρ usually parameterized w/Fermi function

ρ(r) =
ρ0

1 + exp
( r−R

d

) with R = r0 A1/3

Isovector density ρa?? Related to S(ρ)!
In uniform matter

µa =
∂E

∂(N − Z )
=
∂[S(ρ) ρ2

np/ρ]

∂ρnp
=

2 S(ρ)

ρ
ρnp

⇒ ρa=
2aV

a
µa

ρnp =
aV

a ρ

S(ρ)

=⇒ Skyrme-Hartree-Fock densities?
Symmetry Energy Danielewicz, Singh, Lee
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Skyrme-Hartree-Fock Densities
ρ = ρn + ρp
ρ3 ∝ (ρn − ρp)

ρ⊥ ≡ ρa :
Coulomb-corrected ρ3
density f/pure isospin
state

↔ same interaction

l same nucleus

Surface ∼same
f/every nucleus
The higher L, the

farther isovector &
isoscalar surfaces
split apart
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Strategies for Independent Densities

Jefferson Lab
Direct: ∼ p
Interference: ∼ n

PD
elastic: ∼ p + n
charge exchange: ∼ n − p

p

p

σ

ρn+ρp

p

n

π+

ρn−ρp

IAS
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Why Isovector Aura Rather than Neutron Skin
Isovector aura: in no-curvature, no-shell-effect, no-Coulomb
limit, the same for every nucleus!
Not suppressed by low (N − Z )/A!

Nucleon (Lane) optical potential in isospin space:

U = U0 +
4τττTTT

A
U1

isoscalar potential U0 ∝ ρ, isovector potential U1 ∝ (ρn − ρp)
In elastic scattering U = U0 ± N−Z

A U1

In quasielastic charge-exchange (p,n) to IAS: U = 4τ−T+

A U1
Elastic scattering dominated by U0
Quasielastic governed by U1
Geometry usually assumed the same for U0 and U1
e.g. Koning & Delaroche NPA713(03)231
?Isovector aura ∆R from comparison of elastic and quasielastic
(p,n)-to-IAS scattering?
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Expectations on Isovector Aura?

ΔR

Much Larger Than Neutron!

Surface radius R '
√

5
3 〈r

2〉1/2

rms neutron skin

〈r 2〉1/2
ρn − 〈r

2〉1/2
ρp

' 2
N − Z

A

[
〈r 2〉1/2

ρn−ρp
− 〈r 2〉1/2

ρn+ρp

]
rms isovector aura

Estimated ∆R ∼ 3
(
〈r2〉1/2

ρn − 〈r2〉1/2
ρp

)
for 48Ca/208Pb!

Even before consideration of Coulomb effects that further
enhances difference!

Symmetry Energy Danielewicz, Singh, Lee



Introduction Universal Densities? Data Analysis Bayesian Inference Conclusions

Aura

Historically Kirlian/Aura Photography
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Direct Reaction Primer

�

DWBA:

dσ
dΩ
∝
∣∣∣ ∫ dr Ψ∗f U1 Ψi

∣∣∣2
Oscillations: 2-side
interference/source
size
Fall-off: softness of
source
Filling of minimae:
imaginary/real
contributions,
spin-orbit

Symmetry Energy Danielewicz, Singh, Lee
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Potentials Fit to Elastic in Quasielastic

E.g. Koning-Delaroche NPA713(03)231 same radii for
neutrons/protons, isoscalar/isovector, focus on p elastic

p Elastic Scattering QuasiElastic (p,n)

U0 + N−Z
A U1 U1 only?

Symmetry Energy Danielewicz, Singh, Lee
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Effect of Changing Isovector Radius
Koning-Delaroche
NPA713(03)231
same radii R for U0 & U1!

U1(r) ∝ U01

1 + exp r−R
a

R → R + ∆R1

�

charge-exchange cs
oscillations grow

Elastic

Charge Exchange

Symmetry Energy Danielewicz, Singh, Lee
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Effect of Changing Isoscalar Radius
Koning-Delaroche
NPA713(03)231
same radii R for U0 & U1!

U0(r) ∝ U00

1 + exp r−R
a

R → R + ∆R0

�

charge-exchange cs
oscillations shrink

Elastic

Charge Exchange

Symmetry Energy Danielewicz, Singh, Lee
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Impact of U-Radii on (p,n) Cross Section

DWBA

dσ
dΩ
∝
∣∣∣ ∫ dr Ψ∗p(r) U1(r) Ψn(i)

∣∣∣2
Isoscalar radius responsible for
holes in wavefunctions Ψ

Isovector radius responsible for
region where (p,n) conversion
can occur

Symmetry Energy Danielewicz, Singh, Lee
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Modified Koning-Delaroche Fits: 48Ca
In Koning-Delaroche: R0,1 = R + ∆R0,1 a0,1 = a + ∆a0,1
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Modified Koning-Delaroche Fits: 90Zr
In Koning-Delaroche: R0,1 = R + ∆R0,1 a0,1 = a + ∆a0,1
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Modified Koning-Delaroche Fits: 120Sn
In Koning-Delaroche: R0,1 = R + ∆R0,1 a0,1 = a + ∆a0,1
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Modified Koning-Delaroche Fits: 208Pb
In Koning-Delaroche: R0,1 = R + ∆R0,1 a0,1 = a + ∆a0,1
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Thickness of Isovector Aura

Colored: Skyrme predictions. Arrows: half-infinite matter
Large ∼ 0.9 fm skins! ∼Independent of A. . .
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Difference in Surface Diffuseness

Colored: Skyrme predictions. Arrows: half-infinite matter
Sharper isovector surface than isoscalar!
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Difference in Surface Diffuseness

Colored: Skyrme predictions. Arrows: half-infinite matter
Sharper isovector surface than isoscalar!
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Bayesian Inference
Probability density in parameter space p(x) updated as
experimental data on observables E , value E with error σE , get
incorporated

Probability p is updated iteratively, starting with prior pprior
p(a|b) - conditional probability

p(x |E) ∝ pprior(x)

∫
dE e

− (E−E)2

2σ2
E p(E |x)

For large number of incorporated data, p becomes independent
of pprior

In here, pprior and p(E |x) are constructed from all Skyrme ints
in literature, and their linear interpolations. pprior is made
uniform in plane of symmetry-energy parameters (L,aV

a )

Symmetry Energy Danielewicz, Singh, Lee
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Raw Skyrme Parametrizations in (aV
a ,L) Plane

148 Skyrme parametrizations
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Skyrme Interpolations in (aV
a ,L) Plane
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Constraints on Symmetry-Energy Parameters

68% contours for probability density
E∗IAS - from excitations to isobaric analog states
in PD&Lee NPA922(14)1
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Likelihood f/Symmetry-Energy Slope

E∗IAS - from excitations to isobaric analog states
in PD&Lee NPA922(14)1

Oscillations in prior of no significance
- represent availability of Skyrme parametrizations
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Likelihood f/Symmetry-Energy Value

E∗IAS - from excitations to isobaric analog states
in PD&Lee NPA922(14)1

Oscillations in prior of no significance
- represent availability of Skyrme parametrizations
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Conclusions
Symmetry-energy polarizes nuclear densities, pushing isovector
density out to region of low isoscalar density

For large A, displacement of isovector relative to isoscalar
surface is expected to be roughly independent of nucleus and
depend on slope of symmetry energy

Surface displacement can be studied in comparative analysis of
data on elastic scattering and quasielastic charge-exchange
reactions

Such an analysis produces thick isovector aura
∆R ∼ 0.9 fm!

Symmetry energy is stiff!
L = (70 – 100) MeV, aV

a = (33.5 – 36.5) MeV at 68% level

PD&Lee NPA818(09)36 NPA922(14)1; PD, Singh et al
US PHY-1403906 + Indo-US Grant

Symmetry Energy Danielewicz, Singh, Lee
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