Handling of clusters in transport models

Akira Ono

Tohoku University

NuSYM13, July 22 - 26, 2013.

- Why clusters are important (for NuSYM)
- Why clusters are difficult, and how to solve
- Effects of clusters

An event of central collision of Xe + Sn at 50 MeV/nucleon (AMD calculation)

• ⁴He clusters are symmetric (N = Z = 2). However, after emitting many ⁴He clusters, the rest of the system is more neutron rich than the initial system.

$$(N_{\text{tot}}, Z_{\text{tot}}) - n_{\alpha}^{4} \text{He} = (N_{\text{tot}} - 2n_{\alpha}, Z_{\text{tot}} - 2n_{\alpha})$$

In dilute nuclear matter, it is known that clusters play essential roles.

Clusters (e.g. ³H / ³He) are measured by experiments to probe NuSYM.

Clusters are a major part of the disintegrating system in heavy-ion collisions, so collision dynamics may be influenced by the existence of clusters.

- Four uncorrelated nucleons at T = 10 MeV: $\langle E \rangle = \frac{3}{2}T \times 4 = 60 \text{ MeV}$
- An α cluster at T = 10 MeV: $\langle E \rangle = \frac{3}{2}T \times 1 28.3$ MeV = -13.3 MeV

Low-density matter and clusters

Natowitz et al., PRL104 (2010) 202501. Exp.: ⁶⁴Zn + ⁹²Mo, ¹⁹⁷Au at 35 MeV/u Composition of nucleons and clusters

 \Rightarrow Temperature, Density, Symmetry energy

In dilute matter, clusters are important.

EOS with chemical equilibrium

- Shen EOS
- Lattimer-Swesty EOS
- Ishizuka et al.,
- Botvina & Mishustin,
- Horowitz & Schwenk,
- Typel et al.,

Generalized RMF by Typel

Akira Ono (Tohoku University)

Clusters measured for NuSYM

MSU data for Sn+Sn at 50 MeV/u

SAMURAI-TPC at RIKEN RIBF will measure light charged particles including ³H and ³He as well as pions.

Au + Au at 400 MeV/u, central.

Di Toro et al., J. Phys. G 37(2010) 083101.

Large fraction of clusters in head-on collisions

Akira Ono (Tohoku University)

• ⁴He clusters are symmetric (N = Z = 2). However, after emitting many ⁴He clusters, the rest of the system is more neutron rich than the initial system.

$$(N_{\text{tot}}, Z_{\text{tot}}) - n_{\alpha}^{4} \text{He} = (N_{\text{tot}} - 2n_{\alpha}, Z_{\text{tot}} - 2n_{\alpha})$$

- In dilute nuclear matter, it is known that clusters play essential roles.
- Olusters (e.g. ³H / ³He) are measured by experiments to probe NuSYM.
- Clusters are a major part of the disintegrating system in heavy-ion collisions, so collision dynamics may be influenced by the existence of clusters.
 - Four uncorrelated nucleons at T = 10 MeV: $\langle E \rangle = \frac{3}{2}T \times 4 = 60 \text{ MeV}$
 - An α cluster at T = 10 MeV: $\langle E \rangle = \frac{3}{2}T \times 1 28.3$ MeV = -13.3 MeV

Various Microscopic Approaches

→ E → < E</p>

Mean field approaches (TDHF or Vlasov/BUU)

$$\phi_{d}(\mathbf{r}_{1} - \mathbf{r}_{2}) \Psi(\frac{\mathbf{r}_{1} + \mathbf{r}_{2}}{2}) \xrightarrow{\text{exact } e^{-iHt}} \phi_{d}(\mathbf{r}_{1} - \mathbf{r}_{2}) \Psi(\frac{\mathbf{r}_{1} + \mathbf{r}_{2}}{2}, t)$$

$$\stackrel{\mathfrak{R}}{\longrightarrow} \psi_{p}(\mathbf{r}_{1}) \psi_{n}(\mathbf{r}_{2}) \xrightarrow{\mathsf{TDHF}} \psi_{p}(\mathbf{r}_{1}, t) \psi_{n}(\mathbf{r}_{2}, t)$$

Deuteron probability disappears due to the spurious coupling to the center-of-mass motion.

Wave-packet molecular dynamics approaches (e.g. AMD)

$$e^{-\nu \mathbf{r}_1^2 + i \mathbf{P} \cdot \mathbf{r}_1} e^{-\nu \mathbf{r}_2^2 + i \mathbf{P} \cdot \mathbf{r}_2} \xrightarrow{\mathsf{MD}} e^{-\nu (\mathbf{r}_1 - \mathbf{v}t)^2 + i \mathbf{P} \cdot \mathbf{r}_1} e^{-\nu (\mathbf{r}_2 - \mathbf{v}t)^2 + i \mathbf{P} \cdot \mathbf{r}_2}$$

No problem once a cluster is formed, but the cluster-forming probability is the problem.

Danielewicz et al., NPA 533 (1991) 712.

Coupled equations for $f_n(\mathbf{r}, \mathbf{p}, t)$, $f_p(\mathbf{r}, \mathbf{p}, t)$, $f_d(\mathbf{r}, \mathbf{p}, t)$, $f_t(\mathbf{r}, \mathbf{p}, t)$, $f_h(\mathbf{r}, \mathbf{p}, t)$ are solved by the test particle method.

$$\begin{aligned} \frac{\partial f_n}{\partial t} + \mathbf{v} \cdot \frac{\partial f_n}{\partial \mathbf{r}} &- \frac{\partial U_n}{\partial \mathbf{r}} \cdot \frac{\partial f_n}{\partial \mathbf{p}} = I_n^{\text{coll}}[f_n, f_p, f_d, f_t, f_h] \\ \frac{\partial f_p}{\partial t} + \mathbf{v} \cdot \frac{\partial f_p}{\partial \mathbf{r}} &- \frac{\partial U_p}{\partial \mathbf{r}} \cdot \frac{\partial f_p}{\partial \mathbf{p}} = I_p^{\text{coll}}[f_n, f_p, f_d, f_t, f_h] \\ \frac{\partial f_d}{\partial t} + \mathbf{v} \cdot \frac{\partial f_d}{\partial \mathbf{r}} &- \frac{\partial U_d}{\partial \mathbf{r}} \cdot \frac{\partial f_d}{\partial \mathbf{p}} = I_d^{\text{coll}}[f_n, f_p, f_d, f_t, f_h] \\ \frac{\partial f_t}{\partial t} + \mathbf{v} \cdot \frac{\partial f_t}{\partial \mathbf{r}} &- \frac{\partial U_t}{\partial \mathbf{r}} \cdot \frac{\partial f_t}{\partial \mathbf{p}} = I_d^{\text{coll}}[f_n, f_p, f_d, f_t, f_h] \\ \frac{\partial f_h}{\partial t} + \mathbf{v} \cdot \frac{\partial f_h}{\partial \mathbf{r}} &- \frac{\partial U_h}{\partial \mathbf{r}} \cdot \frac{\partial f_h}{\partial \mathbf{p}} = I_h^{\text{coll}}[f_n, f_p, f_d, f_t, f_h] \end{aligned}$$

- E - - E

Effects of clusters on isospin diffusion (BUU)

Akira Ono (Tohoku University)

NuSYM13 10 / 25

AMD wave function

$$|\Phi(Z)\rangle = \frac{\det}{ij} \Big[\exp\Big\{ -\nu \Big(\mathbf{r}_j - \frac{\mathbf{Z}_i}{\sqrt{\nu}} \Big)^2 \Big\} \chi_{\alpha_i}(j) \Big]$$

$$\begin{split} \mathbf{Z}_{i} &= \sqrt{\nu} \mathbf{D}_{i} + \frac{i}{2\hbar \sqrt{\nu}} \mathbf{K}_{i} \\ \nu &: \text{Width parameter} = (2.5 \text{ fm})^{-2} \\ \chi_{\alpha_{i}} &: \text{Spin-isospin states} = p \uparrow, p \downarrow, n \uparrow, n \downarrow \end{split}$$

Time-dependent variational principle

$$\delta \int_{t_1}^{t_2} \frac{\langle \Phi(Z) | (i\hbar \frac{d}{dt} - H) | \Phi(Z) \rangle}{\langle \Phi(Z) | \Phi(Z) \rangle} dt = 0, \qquad \delta Z(t_1) = \delta Z(t_2) = 0$$

Equation of motion for the wave packet centroids Z

$$\frac{d}{dt}\mathbf{Z}_{i} = \{\mathbf{Z}_{i}, \mathcal{H}\}_{\mathsf{PB}} \qquad \text{or} \qquad i\hbar \sum_{j=1}^{A} \sum_{\tau = x, y, z} C_{i\sigma, j\tau} \frac{dZ_{j\tau}}{dt} = \frac{\partial \mathcal{H}}{\partial Z_{i\sigma}}$$

 $\mathcal{H} = \frac{\langle \Phi(Z) | H | \Phi(Z) \rangle}{\langle \Phi(Z) | \Phi(Z) \rangle} + (\text{c.m. correction}), \qquad H: \text{ Effective interaction (e.g. Skyrme force)}$

< □ > < 同

AMD with Two-Nucleon Collisions

Stochastic two-nucleon collisions

- Cross section $\frac{d\sigma_{NN}}{d\Omega}(E,\theta)$ in nuclear medium.
- Pauli blocking for the final state. (Almost automatic in AMD)

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_f | V | \Psi_i \rangle|^2 \delta(E_f - E_i)$$

Stochastic equation of motion

$$\frac{d}{dt}\mathbf{Z}_i = \{\mathbf{Z}_i, \mathcal{H}\}_{\mathsf{PB}} + (\mathsf{NN \ collisions})$$

Akira Ono (Tohoku University)

NuSYM13 12 / 25

Results of AMD with Two-Nucleon Collisions

Xe + Sn central collisions at 50 MeV/u

• AMD with NN collisions

• INDRA data, Hudan et al., PRC 67 (2003)

	AMD	INDRA
<i>M</i> (<i>p</i>)	40.2	8.4
$M(\alpha)$	2.5	10.1

Two-nucleon collision:

$$\begin{split} W_{i \to f} &= \frac{2\pi}{\hbar} |\langle \Psi_f | V | \Psi_i \rangle|^2 \delta(E_f - E_i) \\ &\sum_f |\Psi_f \rangle \langle \Psi_f| = 1 \end{split}$$

What is a suitable complete basis set for the final states of a two-nucleon scattering?

• A usual choice is to change only the two. $\sum_{1,k_2} \left| \varphi_{k_1}(1)\varphi_{k_2}(2)\Psi(3,4,\ldots) \right\rangle \left\langle \varphi_{k_1}(1)\varphi_{k_2}(2)\Psi(3,4,\ldots) \right|$

 If a deuteron will propagate in medium, a more suitable basis will include

 $\left|\varphi_{k_{1}}(1)\psi_{\mathsf{d}}(2,3)\Psi(4,\ldots)\right\rangle\left\langle\varphi_{k_{1}}(1)\psi_{\mathsf{d}}(2,3)\Psi(4,\ldots)\right|+\cdots$

Deuteron pole in medium (T = 0)

Danielewicz and Bertsch, NPA 533 (1991) 712.

More recent calculation by a quantum statistical approach by G. Röpke, NPA 867 (2011) 66.

Clusters have to be handled in a special way

Two-nucleon collision:

$$\begin{split} W_{i \to f} &= \frac{2\pi}{\hbar} |\langle \Psi_f | V | \Psi_i \rangle|^2 \delta(E_f - E_i) \\ &\sum_f |\Psi_f \rangle \langle \Psi_f | = 1 \end{split}$$

What is a suitable complete basis set for the final states of a two-nucleon scattering?

• A usual choice is to change only the two. $\sum_{i_1,k_2} \left| \varphi_{k_1}(1)\varphi_{k_2}(2)\Psi(3,4,\ldots) \right\rangle \left\langle \varphi_{k_1}(1)\varphi_{k_2}(2)\Psi(3,4,\ldots) \right|$

 If a deuteron will propagate in medium, a more suitable basis will include

 $\left|\varphi_{k_{1}}(1)\psi_{\mathsf{d}}(2,3)\Psi(4,\ldots)\right\rangle\left\langle\varphi_{k_{1}}(1)\psi_{\mathsf{d}}(2,3)\Psi(4,\ldots)\right|+\cdots$

Deuteron pole in medium (T = 0)[MeV/c] 1000 800 deuteron 600 Density of states for p-n system Exact Quantum Mechanics Molecular Dynamics Êrel -BF 0 $\langle K \rangle$

 $\langle V \rangle$

Similar to Danielewicz et al., NPA533 (1991) 712.

 $N_1 + B_1 + N_2 + B_2 \rightarrow C_1 + C_2$

- N₁, N₂ : Colliding nucleons
- B₁, B₂: Spectator nucleons/clusters
- $C_1, C_2 : N, (2N), (3N), (4N)$ (up to α cluster)

$$\begin{aligned} v_{\rm NN} \, d\sigma({\sf NBNB} \to {\sf CC}) \\ &= |\langle \varphi_1' | \varphi_1^{+{\sf q}} \rangle|^2 \, |\langle \varphi_2' | \varphi_2^{-{\sf q}} \rangle|^2 \, |M|^2 \, \delta(\mathcal{H} - E) \, p_{\rm rel}^2 dp_{\rm rel} d\Omega \\ &\left(\, v_{\rm NN} \, d\sigma_{\rm NN} = |M|^2 \, \delta(\mathcal{H} - E) \, p_{\rm rel}^2 dp_{\rm rel} d\Omega \, \right) \\ &\frac{d\sigma}{d\Omega} = F_{\rm kin} \, |\langle \varphi_1' | \varphi_1^{+{\sf q}} \rangle|^2 \, |\langle \varphi_2' | \varphi_2^{-{\sf q}} \rangle|^2 \left(\frac{d\sigma}{d\Omega} \right)_{\rm NN \to NN} \end{aligned}$$

The cross section is given from the NN cross section.

$$\begin{split} \mathbf{p}_{\text{rel}} &= \frac{1}{2} (\mathbf{p}_1 - \mathbf{p}_2) = p_{\text{rel}} \hat{\boldsymbol{\Omega}} \\ \mathbf{q} &= \mathbf{p}_1 - \mathbf{p}_1^{(0)} = \mathbf{p}_2^{(0)} - \mathbf{p}_2 \\ \varphi_1^{+\mathbf{q}} &= \exp(+i\mathbf{q} \cdot \mathbf{r}_{\mathbf{N}_1})\varphi_1^{(0)} \\ \varphi_2^{-\mathbf{q}} &= \exp(-i\mathbf{q} \cdot \mathbf{r}_{\mathbf{N}_2})\varphi_2^{(0)} \end{split}$$

Akira Ono (Tohoku University)

NuSYM13 15 / 25

Construction of Final States

Clusters (in the final states) are assumed to have $(0s)^N$ configuration.

Final states are not orthogonal: $N_{ij} \equiv \langle \Phi'_i | \Phi'_i \rangle \neq \delta_{ij}$

The probability of cluster formation with one of B's:

$$\hat{P} = \sum_{ij} |\Phi'_i\rangle N_{ij}^{-1} \langle \Phi'_j|, \qquad P = \langle \Phi^{\mathbf{q}} | \hat{P} | \Phi^{\mathbf{q}} \rangle \qquad \neq \sum_i |\langle \Phi'_i | \Phi^{\mathbf{q}} \rangle|^2$$

 $\begin{cases} P \implies \text{Choose one of the candidates and make a cluster.} \\ 1 - P \implies \text{Don't make a cluster (with any n)}. \\ \square \models e^{-\frac{1}{2}} \models e^{-\frac{1}{2}} \models e^{-\frac{1}{2}} \end{cases}$

Akira Ono (Tohoku University)

Handling of clusters in transport models

□ > < E > < E > E 9 < ○</p>

Effect of Clusters on the Density Evolution

Without cluster correlations (AMD with NN collisions)

With cluster correlations

During the time evolution, clusters are ...

- formed at NN collisions.
- propagated by AMD equation. (nothing special)
- broken by NN collisions. (nothing special)

Very strong tendency of turning into cluster gas.

	w/o C	with C	INDRA
M(p)	40.2	10.9	8.4
$M(\alpha)$	2.5	23.2	10.1
$Z_{\rm gas}/Z_{\rm tot}$	55%	78%	(40-50%)

- Gas =
 - \sum (particles of $A \le 4$)
- Liquid = ∑ (heavier fragments)

Cluster-Cluster Correlations

Relative motions between clusters should be treated quantum mechanically. In AMD,

- The binding energy a few clusters is reasonably correct,
- but the phase space of bound configuration is too small.

e.g. ⁷Li = $\alpha + t - 2.5$ MeV

 $|\alpha + t\rangle \rightarrow |^{7}$ Li \rangle with probability $\approx |\langle^{7}$ Li $|\alpha + t\rangle|^{2}$

- if C_i is the cluster closest to C_i , (i, j) = (1, 2) or (2, 1),
- and if they are moderately separated, $|\mathbf{R}_{rel}| < R_{max}$,
- and if they are moving slowly away from each other, |P_{rel}| < P_{max} and P_{rel} · R_{rel} > 0.

 $P_{\text{max}}^2/2\mu = 8 \text{ MeV}, \qquad R_{\text{max}} = 5 \text{ fm}$ (adjustable)

Energy is conserved by scaling the relative momentum between the C_1 - C_2 pair and a third cluster C_3 .

Au + Au Central Collisions at Higher Energies

Energy Spectra of Clusters

 $\frac{124}{\text{Sn}}$ Sn + $\frac{124}{\text{Sn}}$ and $\frac{112}{\text{Sn}}$ Sn + $\frac{112}{\text{Sn}}$ central collisions at 50 MeV/nucleon \Rightarrow Energy spectra of tritons and ³He emitted to transverse directions

SLy4 (L = 46 MeV)

L = 108 MeV

• Triton/³He difference is consistent with the gas part of fractionation.

Energy Spectra of Clusters

 $\frac{124}{\text{Sn}}$ Sn + $\frac{124}{\text{Sn}}$ and $\frac{112}{\text{Sn}}$ Sn + $\frac{112}{\text{Sn}}$ central collisions at 50 MeV/nucleon \Rightarrow Energy spectra of tritons and ³He emitted to transverse directions

• Triton/³He difference is consistent with the gas part of fractionation.

Energy Spectra of Clusters

 $\frac{124}{\text{Sn}}$ Sn + $\frac{124}{\text{Sn}}$ and $\frac{112}{\text{Sn}}$ + $\frac{112}{\text{Sn}}$ central collisions at 50 MeV/nucleon \Rightarrow Energy spectra of tritons and ³He emitted to transverse directions

- Triton/³He difference is consistent with the gas part of fractionation.
- To reproduce data, there should be more low-energy tritons and less high-energy tritons, and low-energy ³He particles (or protons) should be less.

(known as ³He puzzle)

Akira Ono (Tohoku University)

NuSYM13 22 / 25

Compression and Expansion Dynamics of Neutrons and Protons

Compared to the current AMD results (with SLy4), neutrons have to be more slowly expanding in order to explain the data of

- the triton spectrum
- the small yield of proton-rich nuclei
- the large energy of proton-rich nuclei

Momentum dependence of the symmetry potential

 $(m_n^* \text{ v.s. } m_p^*)$ and something more should be studied.

Compression and Expansion Dynamics of Neutrons and Protons

Compared to the current AMD results (with SLy4), neutrons have to be more slowly expanding in order to explain the data of

- the triton spectrum
- the small yield of proton-rich nuclei
- the large energy of proton-rich nuclei

Momentum dependence of the symmetry potential $(m_n^* \text{ v.s. } m_p^*)$ and something more should be studied.

Data @NSCL/MSU Liu et al., PRC86(2012)024605 Kinetic energies of proton-rich fragments are anomalously large. (Yields of low-energy proton-rich fragments are anomalously small.) (generalized ³He puzzle)

Akira Ono (Tohoku University)

Summary

- Importance of clusters
 - as probes for nuclear symmetry energy
 - Cluster correlations are strong enough to affect the equation of state and the collision dynamics
- Handling of clusters in transport models
 - Treat clusters as particles (BUU), or specific quantum final states in two-nucleon collisions (AMD: clusters with *A* = 2, 3, 4)
 - Correlations between clusters are also important for fragment formation.
- Clusters (³H and ³He) in central collisions at 50 MeV/u
 - Dependence on symmetry energy, as expected from the behavior of gas part in fractionation
 - Need to understand the ³He puzzle. Due to the momentum dependence of the symmetry potential, and/or something unknown?

MSU Data: T.X. Liu et al., PRC 014603 (2004).

- The average asymmetry and the width are sensitive to the symmetry energy.
- Compared to data, $Z \ge N$ fragments are overproduced.

Akira Ono (Tohoku University)

Handling of clusters in transport models

NuSYM13 25 / 25