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Probing Extreme Matter Through
Observations of Neutron Stars

Meutron stars, the ultra-dense cores left
.' behind after massive stars collapse, contain

the densest matter known in the Universe

outside of a black hole.
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Outline

e Masses, Radii, and the EOS

e PRE X-ray bursts

e QLMXBs

e Statistical analysis

e Results: M — R curves, EOS, and L

e As many of the skeletons in my closet that I have time for




Gateway Quantities to the Symmetry Energy

Are S and L really the quantities of interest?

e Pressure of neutron matter near and above saturation
o Easier to compute theoretically
o Related to neutron stars

» Isovector dependence of the nucleon optical potential
o Input for heavy-ion collisions
o Relevant for transport in dense matter

e Isovector response of the ground state of a nucleus
o Modification of the single particle energies
o and the density distributions

e Isovector effective mass

Nevertheless, for now I stick with .S and L.



Neutron Star Masses and Radii and the EOS ’
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 Unlike planets, neutron stars form a one-dimensional family
e Neutron stars (to better than 10%) all lie on one universal mass-radius curve

o Recent measurement of two 2 M 5 neutron stars
Demorest et al. (2010), Antoniadis et al. (2013)

e Until recently, neutron star radii constrained to 8-15 km
Lattimer and Prakash (2007)



Accreting Neutron Stars: LMXBs
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e Most stars have companions: neutron stars can have main-sequence companions
e Accretion heats the crust and is episodic
At high enough density, H and He are unstable to thermonuclear explosions



Photospheric Radius

Expansion X-ray Bursts

e X-ray bursts sufficiently strong to blow
off the outer layers - radiate at the
Eddington limit

 Flux peaks, then temperature reaches a
maximum, "touchdown"
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e Normalization during the tail of the burst:
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e If we have the distance, two constraints
for mass and radius

e Dimensionless parameter
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Photospheric Radius

Expansion X-ray Bursts

o X-ray bursts sufficiently strong to blow
off the outer layers - radiate at the
Eddington limit

 Flux peaks, then temperature reaches a
maximum, "touchdown"
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e Normalization during the tail of the burst:
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Radius Measurements in QLMXBs

Quiescent LM XBs
e Measure flux of photons and
. . . . 1 I
their energy distribution 14; = E .
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Also information from PRE

X-ray bursts, ~ 8-12 objects
(more on the way)

Lattimer and Steiner (2013)
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nuclear physics for low densities
N ﬁ_ k e Bayes theorem:
] ] PIM;|D] = P[D|M ] PIM ]
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Bayesian Analysis

‘ e Underconstrained problem

e Intuitive way to theoretical input
e Parameterizations based on known

> ;PID|M ;| PIM ]
e Prior << EOS parameterization

e Determine parameters through marginalization, 1.e.

PM?) = [ 5(M; — M®)PID|M;] PM]

e Bayes factor for model comparison
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Mass and Radius Results
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« Vary priors through different EOS parameterizations, choose smallest region enclosing all results
« Range of radii for a 1.4 solar mass star: 10.4 and 12.9 km (95% conf.)
o All neutron stars have nearly the same radius
« Several models are ruled out
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Constraining the EOS of dense matter

10° g —
10° =
E |
= 10
o
2
= %
0. 045,02 025 -
ng (fm™) :
.I"I ] I L | | | ] ] ] ] ] 1
10 0.4 0.6 0.8 I

Ny (frn'?r )
Steiner, Lattimer, and Brown (2013)

e P(c) determined to within about 60%
« We find concordance between nuclear physics data and astronomical observations
 Probe densities inaccessible to experiment and to perturbation theory in QCD



Constraints on the Nuclear Symmetry Energy

N BEEmEE e Found 43 <L <52 MeV to 68%
S, NO COIT. unc. - (Steiner and Gandolfi 2012)
gl e Found 43.3 <L <66.5 MeV to 68% and
Quarks - 41.1 <L <83.4 MeV to 95%

(Steiner et al. 2013)
» Model C: Strong phase transitions just above the
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PRE X-ray bursts N

» van Paradijs et al. pioneer the idea, it's rarely used until Ozel writes several papers starting
in 20071sh, getting small radii

e We demonstrate that photosphere radi are large at touchdown, add QLMXB data, use some
nuclear physics, and get ~ 11 km radii. (Steiner et al. 2010)

e Suleimanov gets larger radii (14 km) for a long burst in XTE J1701, and claims other PRE
X-ray data is poisoned by accretion (Suleimanov et al. 2011)

e Yet the larger radius 1s somewhat inconsistent with QLMXB radii (Steiner et al. 2013)

 There are several systematic issues: absolute flux calibration, atmosphere uncertainties,
time evolution of f -, spherical asymmetry, funny features in A, different A's for different
bursts (sphenical asymmetry addressed Zamfir et al. 2012, they find small radu)

e Becomes clear that there may be (at least) two types of PRE X-ray bursts, which have
different properties. May help explain some phenomenology. (Work by G. Zhang)

e Giiver et al. do a systematic analysis of several sources and show that the fit of XTE J1701
is poor, but good for other sources (Giiver et al. 20122 and 2012b)

e Work with Suleimanov finds XTE J1701 is complicated by a boundary layer (possibly
explaining the poor fit?) Retvinsev et al. 2013)

e Status: Larger (~14 km) radii are not preferred and result in poorer fits, unless you presume

something has gone terribly wrong in QLMXBs. Nevertheless, PRE X-ray bursts are not
well-understood. Need time-dependent models and better explanation of observed diversity.



QLMXB Complications
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e Observations difficult to reconcile with traditional nuclear physics
interpretations



QLMXB Complications
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e We propose treating X-ray absorption di

erently, infer from optical

measurements instead of from X-ray fitting
o We find larger Bayes factors for neutron stars with nuclear crusts
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Helium Atmosphere
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QLMXB Complications

e We consider He atmospheres as well
03 » Generally increases radii and improves

02 Bayes factors for neutron stars with
0.1 nuclear crusts
0
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Summary

Neutron stars are providing novel constraints on L

 There are gateway quantities that may be helpful

104 km< R14<12.9 km
e41.1 MeV < L < 83.4 MeV
¢ Lot of work left to do...

o Multitude of interactions with observations and experiment
continue to be fruitful

e FRIB in particular will help constrain S, L, the crust,
and the EOS above the saturation density
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