Recent Neutron Star Observations and the Nature of Matter Near and Above Saturation

Andrew W. Steiner (INT/U. Washington) June 27, 2013

With: Edward F. Brown (MSU), Stefano Gandolfi (Los Alamos), and James M. Lattimer (Stony Brook)

Outline

- Masses, Radii, and the EOS
- PRE X-ray bursts
- QLMXBs
- Statistical analysis
- Results: M-R curves, EOS, and L
- As many of the skeletons in my closet that I have time for

Gateway Quantities to the Symmetry Energy

Are S and L really the quantities of interest?

- Pressure of neutron matter near and above saturation
 - Easier to compute theoretically
 - Related to neutron stars
- Isovector dependence of the nucleon optical potential
 - Input for heavy-ion collisions
 - Relevant for transport in dense matter
- Isovector response of the ground state of a nucleus
 - Modification of the single particle energies
 - and the density distributions
- Isovector effective mass

Nevertheless, for now I stick with S and L.

Neutron Star Masses and Radii and the EOS

- Unlike planets, neutron stars form a one-dimensional family
- Neutron stars (to better than 10%) all lie on one universal mass-radius curve
- Recent measurement of two $2~M_{\odot}$ neutron stars Demorest et al. (2010), Antoniadis et al. (2013)
- Until recently, neutron star radii constrained to 8-15 km
 Lattimer and Prakash (2007)

Accreting Neutron Stars: LMXBs

- Most stars have companions: neutron stars can have main-sequence companions
- Accretion heats the crust and is episodic
- At high enough density, H and He are unstable to thermonuclear explosions

Photospheric Radius Expansion X-ray Bursts

- X-ray bursts sufficiently strong to blow off the outer layers - radiate at the Eddington limit
- Flux peaks, then temperature reaches a maximum, "touchdown"

$$F_{TD} = rac{GMc}{\kappa D^2} \, \sqrt{1 - 2 eta(r_{ph})}$$

Normalization during the tail of the burst:

$$rac{F_{\infty}}{\sigma T_{bb,\infty}^4} = f_c^{-4} igg(rac{R}{D}igg)^2 ig(1-2etaig)^{-1}$$

- If we have the distance, two constraints for mass and radius
- Dimensionless parameter

$$lpha \equiv rac{F_{TD} \kappa D}{\sqrt{A} \, c^3 f_c^2}$$

Ozel et al. (2010)

Photospheric Radius Expansion X-ray Bursts

- X-ray bursts sufficiently strong to blow off the outer layers - radiate at the Eddington limit
- Flux peaks, then temperature reaches a maximum, "touchdown"

$$F_{TD} = rac{GMc}{\kappa D^2} \, \sqrt{1 - 2 eta(r_{ph})}$$

Normalization during the tail of the burst:

$$rac{F_{\infty}}{\sigma T_{bb,\infty}^4} = f_c^{-4} igg(rac{R}{D}igg)^2 ig(1-2etaig)^{-1}$$

- If we have the distance, two constraints for mass and radius
- Dimensionless parameter

$$lpha \equiv rac{F_{TD} \kappa D}{\sqrt{A} \, c^3 f_c^2}$$

Gandolfi et al. (2013)

Radius Measurements in QLMXBs

Quiescent LMXBs

- Measure flux of photons and their energy distribution
- Know distance if in a globular cluster
- Implies radius measurement

$$F \propto T_{
m eff}^4 igg(rac{R_\infty}{D}igg)^2$$

i.e. Rutledge et al. (1999)

Also information from PRE X-ray bursts, ~ 8-12 objects (more on the way)

Lattimer and Steiner (2013)

Bayesian Analysis

- Underconstrained problem
- Intuitive way to theoretical input
- Parameterizations based on known nuclear physics for low densities
- Bayes theorem:

$$P[\mathcal{M}_i|D] = \frac{P[D|\mathcal{M}_i]P[\mathcal{M}_i]}{\sum_j P[D|\mathcal{M}_j]P[\mathcal{M}_j]}$$

- Prior ⇔ EOS parameterization
- Determine parameters through marginalization, i.e.

$$P(\mathcal{M}_i^0) = \int \delta(\mathcal{M}_i - \mathcal{M}_i^0) P[D|\mathcal{M}_i] P[M]$$

Bayes factor for model comparison

$$B_{12} = rac{\int P[D|{\cal M}_1]P[M_1]}{\int P[D|{\cal M}_2]P[M_2]}$$

Mass and Radius Results

Steiner, Lattimer, and Brown (2013)

- Vary priors through different EOS parameterizations, choose smallest region enclosing all results
- Range of radii for a 1.4 solar mass star: 10.4 and 12.9 km (95% conf.)
- All neutron stars have nearly the same radius
- · Several models are ruled out

Constraining the EOS of dense matter

- $P(\varepsilon)$ determined to within about 60%
- · We find concordance between nuclear physics data and astronomical observations
- Probe densities inaccessible to experiment and to perturbation theory in QCD

Constraints on the Nuclear Symmetry Energy

Steiner and Gandolfi (2012)

- Found 43 < L < 52 MeV to 68%
 (Steiner and Gandolfi 2012)
- Found 43.3 < L < 66.5 MeV to 68% and 41.1 < L < 83.4 MeV to 95% (Steiner et al. 2013)
- Model C: Strong phase transitions just above the saturation density

PRE X-ray bursts

- van Paradijs et al. pioneer the idea, it's rarely used until Özel writes several papers starting in 2007ish, getting small radii
- We demonstrate that photosphere radii are large at touchdown, add QLMXB data, use some nuclear physics, and get ~ 11 km radii. (Steiner et al. 2010)
- Suleimanov gets larger radii (14 km) for a long burst in XTE J1701, and claims other PRE X-ray data is poisoned by accretion (Suleimanov et al. 2011)
- Yet the larger radius is somewhat inconsistent with QLMXB radii (Steiner et al. 2013)
- There are several systematic issues: absolute flux calibration, atmosphere uncertainties, time evolution of f_C , spherical asymmetry, funny features in A, different A's for different bursts (spherical asymmetry addressed Zamfir et al. 2012, they find small radii)
- Becomes clear that there may be (at least) two types of PRE X-ray bursts, which have different properties. May help explain some phenomenology. (Work by G. Zhang)
- Güver et al. do a systematic analysis of several sources and show that the fit of XTE J1701 is poor, but good for other sources (Güver et al. 2012a and 2012b)
- Work with Suleimanov finds XTE J1701 is complicated by a boundary layer (possibly explaining the poor fit?) (Retvinsev et al. 2013)
- Status: Larger (~14 km) radii are not preferred and result in poorer fits, unless you presume something has gone terribly wrong in QLMXBs. Nevertheless, PRE X-ray bursts are not well-understood. Need time-dependent models and better explanation of observed diversity.

QLMXB Complications

Lattimer and Steiner (2013) and adapted from Guillot et al. (2013)

 Observations difficult to reconcile with traditional nuclear physics interpretations

QLMXB Complications

Lattimer and Steiner (2013) and adapted from Guillot et al. (2013)

- We propose treating X-ray absorption differently, infer from optical measurements instead of from X-ray fitting
- We find larger Bayes factors for neutron stars with nuclear crusts

Servillat et al. 2012

Lattimer and Steiner (2013), adapted from Guillot et al. (2013)

QLMXB Complications

- We consider He atmospheres as well
- Generally increases radii and improves Bayes factors for neutron stars with nuclear crusts

Summary

Neutron stars are providing novel constraints on L

- There are gateway quantities that may be helpful
- 10.4 km $< R_{1.4} < 12.9$ km
- ullet $41.1~{
 m MeV} < L < 83.4~{
 m MeV}$
- Lot of work left to do...
- Multitude of interactions with observations and experiment continue to be fruitful
- FRIB in particular will help constrain S, L, the crust, and the EOS above the saturation density