1

Electric Dipole Response of ²⁰⁸Pb and Constraints on the Symmetry Energy

Atsushi Tamii

Research Center for Nuclear Physics (RCNP) Osaka University, Japan

> I.Poltoratska, P. von Neumann-Cosel and RCNP-E282 Collaboration

NuSym13, July 22-26, 2013, NSCL

Contents

- Electric dipole response of ²⁰⁸Pb has been precisely measured. Method: proton inelastic scattering, electro-magnetic probe Extracted data: dipole polarizability, PDR strength
- •Constraints on the symmetry energy has been determined. with a help of mean-field calculations

Determination of the Symmetry Energy Term in EOS.

Core-Collapse Supernova

Accreting neutron star/white dwarf, X-Ray burst, Superburst

Neutron Star Mass and Radius

Lattimer et al., Phys. Rep. 442, 109(2007)

Neutron Star Structure

http://www.astro.umd.edu/~miller/nstar.html

Nuclear Equation of State (EOS)

EOS for Energy per nucleon

$$\frac{E}{A}(\rho,\delta) = \frac{E}{A}(\rho,0) + S(\rho)\delta^{2} + \dots$$

$$\rho(r) = \rho_{n}(r) + \rho_{p}(r)$$

$$\delta(r) = \frac{\rho_{n}(r) - \rho_{p}(r)}{\rho_{n}(r) + \rho_{p}(r)}$$
Summetry operation

Symmetry energy

$$S(\rho) = J + \frac{L}{3\rho_0} (\rho - \rho_0) + \frac{K_{sym}}{18\rho_0^2} (\rho - \rho_0)^2 + \dots$$

$$L \propto P \propto R_{\rm n-star}^4$$

(Baryonic Pressure)

Neutron Skin Thickness Measurement by Electroweak Interaction **PREX** at J-Lab: Z⁰ of weak interaction : sees the neutrons

Model independent determination of the neutron skin thickness

Neutron Skin Thickness Measurement by Electroweak Interaction

The model independent determination of δR_{np} by PREX is important but the present accuracy is limited.

Determination of Neutron Density Distribution by Strong Interaction

Polarized proton elastic scattering at 295 MeV (RCNP, Osaka University) Analysis with relativistic impulse approximation (RIA), medium modification fixed with ⁵⁸Ni data

Neutron Skin Thickness Measurement by Electromagnetic Interaction

Covariance analysis of energy density functional calculations with Skrym SV-min effective interaction.

P.-G. Reinhard and W. Nazarewicz, PRC 81, 051303(R) (2010).

Strong correlation between the (electric) dipole polarizability and the neutron skin of ²⁰⁸Pb

(Electric) Dipole Polarizability

Electric Dipole Polarizability

Electric Dipole Polarization

 $\mathbf{P} = \alpha \mathbf{E}$

Inversely energy weighted sum-rule of B(E1)

$$\alpha_{D} = \frac{\hbar c}{2\pi^{2}} \int \frac{\sigma_{abs}}{\omega^{2}} d\omega = \frac{8\pi}{9} \int \frac{dB(E1)}{\omega}$$

NuSym13,July 22-26, 2013 at NSCL

Electric Dipole (E1) Response

Probing EM response of the target nucleus

Proton Inelastic Scattering at Forward Angles

An electromagnetic probe (Coulomb excitation)

•High-resolution (20-30keV), high (~90%)/uniform efficiency

•Covers a broad **Ex of 5-25MeV**

•Insensitive to the decay property

•Requires **small amount of target** (several mili-gram) and a few days of beam time

• Applicable to stable nuclei

Experimental Method

High-resolution polarized (p,p') measurement at zero degrees and forward angles

Research Center for Nuclear Physics,

NuSym13, July 22-26, 2013 at NSCL

AVF Cyclotron Facility

Setup for E282&E316

-

B(E1): low-lying discrete states

Excellent agreement between (p,p') and (γ , γ') below ~ S_n

I. Poltoratska, PhD thesis

B(E1): continuum and GDR region

Neglect of data for Θ>4: (p,p´) response too complex

Included E1/M1/E2 or E1/M1/E3 (little difference)

Comparison between the two methods

Excellent agreement among three measurements around the GDR bump region

I. Poltoratska, PhD thesis

E1 Response of ²⁰⁸Pb and $\alpha_{\rm D}$

The dipole polarizability of ²⁰⁸Pb has been precisely determined.

AT et al., PRL107, 062502(2011)

Abstract

B(E1) distribution of ²⁰⁸Pb has been precisely determined.

Dipole polarizability: $\alpha_D = 20.1 \pm 0.6 \, \text{fm}^3$

Constraints on the symmetry energy

with a help of theoretical models

Correlation Between Dipole Polarizability and Neutron Skin Thickness

J. Piekarewicz et al., PRC85, 041302(2012)

Correlation Between Dipole Polarizability and Neutron Skin Thickness

Correlation Between Dipole Polarizability and Neutron Skin Thickness

 (0.168 ± 0.022) fm in ²⁰⁸Pb

X. Roca-Maza et al., arXiv:1307.4806

 $\alpha_D J$ is a strong isovector indicator.

Insights from the droplet model $\alpha_D^{\rm DM} \approx \frac{\pi e^2}{54} \frac{A \langle r^2 \rangle}{J} \left[1 + \frac{5}{3} \frac{L}{J} \epsilon_A \right]$

Talk by X. Roca-Maza (next session)

(b)

X. Roca-Maza et al., arXiv:1307.4806

 $10^{-2} \alpha_{\mathrm{D}} J ~(\mathrm{MeV} ~\mathrm{fm}^3)$ TF 0.24 0.28 0.2 0.32 12 0.16 Δr_{np} (fm) =0.96 $10^{-2} \alpha_{\mathrm{D}} J ~(\mathrm{MeV fm}^3)$ 10 FSU NL3 D-ME Skyrme 8 SV SAMi TF120 2040 80 60 100 140 L (MeV)

=0.97

DD-ME

Skyrme

FSU NL3

SV <u>SAMi</u>

It would be better to use the correlation between $\alpha_D J$ and L (or Δ_{np}) than use the correlation between α_D and L (or Δnp) to extract constraints.

We have used the correlation between α_{D} J and L (gray band in the right figure) to extract a constraint band in the J-L plane.

$$10^{-2}\alpha_D J = (4.94 \pm 0.09) + (0.031 \pm 0.001)I$$

Constraints on J and L

M.B. Tsang *et al.,* PRC**86**, 015803 (2012).

I. Tews et al., PRL110, 032504 (2013)

DP: Dipole Polarizability HIC: Heavy Ion Collision PDR: Pygmy Dipole Resonance IAS: Isobaric Analogue State FRDM: Finite Range Droplet Model (nuclear mass analysis) n-star: Neutron Star Observation χEFT: Chiral Effective Field Theory

Constraints on J and L

M.B. Tsang *et al.,* PRC**86**, 015803 (2012).

I. Tews et al., PRL110, 032504 (2013)

DP: Dipole Polarizability HIC: Heavy Ion Collision PDR: Pygmy Dipole Resonance IAS: Isobaric Analogue State FRDM: Finite Range Droplet Model (nuclear mass analysis) n-star: Neutron Star Observation χEFT: Chiral Effective Field Theory

DP: $\alpha_D = 20.1 \pm 0.6 \, \text{fm}^3$ + theoretical uncertainty

Constraints on J and L

M.B. Tsang *et al.,* PRC**86**, 015803 (2012).

I. Tews et al., PRL110, 032504 (2013)

DP: Dipole Polarizability HIC: Heavy Ion Collision PDR: Pygmy Dipole Resonance IAS: Isobaric Analogue State FRDM: Finite Range Droplet Model (nuclear mass analysis) n-star: Neutron Star Observation χEFT: Chiral Effective Field Theory

QMC by S. Gandolfi et al., talk on Tuesday

A short note

J. Lattimer Ann. Rev. Nucl. Part. Sci. 62, 485 (2012): talk on Tuesday

different correlation from the two-step evaluation

120

100

80

40

20

0

(MeV) 00

Constraints on the L-J plane

PDR strength

E1 Response of ²⁰⁸Pb and α_D

AT et al., PRL107, 062502(2011)

• Theoretical dependences of pygmy EWSR on J and L are determined using relativistic energy density functionals spanning the range of J and L values. Available experimental data provide constraints on theoretical models.

Similar approach but different theory \rightarrow A. Carbone et al, PRC 81, 041301(R) (2010)

Exp. Data: ⁶⁸Ni : O. Wieland et al, PRL 102, 092502 (2009) ^{132,130}Sn: A. Klimkiewicz et al., PRC 76, 051603 (R) (2007) ²⁰⁸Pb: I. Poltoratska et al., PRC 85, 041304 (R) (2012)

Courtesy of N. Paar

Determination of Symmetry Energy

M.B. Tsang *et al.,* PRC**86**, 015803 (2012).

I. Tews et al., PRL110, 032504 (2013)

DP: Dipole Polarizability HIC: Heavy Ion Collision PDR: Pygmy Dipole Resonance IAS: Isobaric Analogue State FRDM: Finite Range Droplet Model (nuclear mass analysis) n-star: Neutron Star Observation χEFT: Chiral Effective Field Theory

We should take care of the model uncertainty.

Summary

•The electric dipole response of ²⁰⁸Pb has been precisely measured by using proton inelastic scattering as an electro magnetic probe.

as $\alpha_D = 20.1 \pm 0.6 \text{ fm}^3/e^2$

•Constraints on the symmetry energy parameters have been extracted with a help of theoretical calculations.

•A lot of data under analysis:

⁹⁶Mo (DCS and PT): D. Martin
⁴⁸Ca (DCS): J. Birkhan
⁹⁰Zr (DCS): C. Iwamoto (PDR-region, published in PRL108, 262501 (2012))
¹²⁰Sn (DCS and PT): A.M. Krumbholtz, T. Hashimoto
¹⁵⁴Sm (DCS and PT): A. Krugmann
⁸⁸Sr, ⁹²Mo (DCS): C. Iwamoto
⁷⁰Zn (DCS):

Collaborators RCNP-E282 RCNP, Osaka University

<u>A. Tamii</u>, H. Fujita, Y. Fujita, K. Hatanaka, H. Sakaguchi Y. Tameshige and M. Yosoi

IKP, TU-Darmstadt

RIKEN

H. Matsubara and J. Zenihiro

P. von Neumann-Cosel, A-M. Heilmann, Y. Kalmykov, <u>I. Poltoratska</u>, V.Yu. Ponomarev, A. Richter and J. Wambach

KVI, Univ. of Groningen
T. Adachi and L.A. Popescu
IFIC-CSIC, Univ. of Valencia
B. Rubio and A.B. Perez-Cerdan
Sch. of Science Univ. of Witwatersrand
J. Carter and H. Fujita
iThemba LABS
F.D. Smit
Texas A&M Commerce
C.A. Bertulani
NSCL
E. Litivinova

Dep. of Phys., Kyoto University T. Kawabata

CNS, Univ. of Tokyo

K. Nakanishi, Y. Shimizu and Y. Sasamoto

CYRIC, Tohoku University M. Itoh and Y. Sakemi

Dep. of Phys., Kyushu University M. Dozono Dep. of Phys., Niigata University Y. Shimbara⁴⁰

NuSym13,July 22-26, 2013 at NSCL

Thank You

Special thanks to: X. Roca-Maza, J. Piekarewicz, W. Nazarewicz, and N. Paar

Based on the work by X. Roca-Maza et al., PRL106, 252501 (2011)

Medium modification of RLF NN interaction

Medium effect

$$g_j^2 \rightarrow g_j^{*2} \equiv \frac{g_j^2}{1 + a_j \rho(r) / \rho_0},$$

$$m_j \rightarrow m_j^* \equiv m_j \left(1 + b_j \rho(r) / \rho_0\right)$$

$$j = \sigma, \omega.$$

→ Phenomenological parameters; a_j, b_j
 → Universal form of density-dependent terms
 → At ρ=0, same as free *NN* interaction

Need to calibrate with real data

H. Sakaguchi et al., PRC57, 1749.

Determination of Symmetry Energy

M.B. Tsang *et al.,* PRC**86**, 015803 (2012).

I. Tews et al., PRL110, 032504 (2013)

and this work

DP: Dipole Polarizability HIC: Heavy Ion Collision PDR: Pygmy Dipole Resonance IAS: Isobaric Analogue State FRDM: Finite Range Droplet Model (nuclear mass analysis) n-star: Neutron Star Observation χEFT: Chiral Effective Field Theory

> L=45±18 MeV J=30.9±1.5 MeV

X. Roca-Maza et al., arXiv:1307.4806

$$10^{-2} \alpha_D J = (4.94 \pm 0.09) + (0.031 \pm 0.001)L$$
$$L = -145 \pm (9)_{\text{theo.}} + [6.07 \pm (0.18)_{\text{exp.}} \pm (0.26)_{\text{theo.}}]J,$$
$$\Delta r_{np} = 0.168 \pm (0.009)_{\text{exp.}} \pm (0.019)_{\text{theo.}} \pm (0.021)_{\text{est.}} \text{fm}$$