The (theoretical) properties of very hot compound nuclei

- B.V. Carlson, F.T. Dalmolin, M. Dutra ITA, Brazil
- S. R. Souza IF UFRGS and IF UFRJ, Brazil
- R. Donangelo IF UFRJ, Brazil and IF Universidad de la República, Uruguay

NuSym NSCL / FRIB July 22-26 2013

Motivation

- One would expect nuclei to grow bigger as they become hotter. How much bigger?

- How does the change in size affect statistical properties? What is the relationship between excitation energy, entropy and temperature?

- What is the limiting excitation energy or temperature above which the nucleus does not exist?

- In short, what can we expect when a nucleus gets hotter and hotter?

Finite temperature formalism

In the Hartree-Fock approximation, one uses the single-particle density operator

$$D = \frac{1}{Z_0} \exp\left(-\sum_i \alpha_i a_i^{\dagger} a_i\right) \quad \text{with } Z_0 \text{ the grand canonical partition function,}$$

to define the thermodynamical potential

$$\Omega(D) = \operatorname{Tr}[DH] - TS(D) - \mu_n N(D) - \mu_p Z(D)$$

where the entropy is given by

$$S = Tr[D\ln D]$$

and *N*(*D*) and *Z*(*D*) are the neutron and proton number operators and μ_n and μ_p the associated chemical potentials.

The Hartree-Fock equations are obtained by minimizing the thermodynamical potential with respect to the wavefunctions, $|i\rangle = a_i^{\dagger} |0\rangle$

The single-particle occupations that result are

$$n_i = \operatorname{Tr}\left[Da_i^{\dagger}a_i\right] = \frac{1}{1 + \exp\left[\left(e_i - \mu\right)/T\right]}$$

Bound states only

At low temperature, only bound single particle states have non-neglible occupations. At higher temperatures, we can artificially restrict the occupations so that only bound single-particle states are occupied.

NL3 – G.A. Lalazissis, J. König and P. Ring, Phys.Rev. C 55, 540 (1997). DD-ME1 – T. Niksic, D. Vretenar, P. Finelli, and P.Ring, Phys. Rev. C 66, 024306 (2002).

Continuum states

Consider scattering from a potential V(x) in a 1-D box [-R,R] with the condition that the wave function is zero on the edges of the box.

For a positive energy continuum state, this implies that

$$2kR + \delta(E) = n\pi$$

where $\delta(E)$ is the phase shift due to scattering from the potential.

The density of continuum single-particle states is

$$\rho(E) = \frac{dn}{dE} = \frac{2R}{\pi} \frac{dk}{dE} + \frac{1}{\pi} \frac{d\delta}{dE}$$

$$\begin{split} \Omega &= T \sum_{i} \ln\left(1 - n_{i}\right) \\ &\to T \sum_{i \in b} \ln\left(1 - n_{i}\right) + \frac{T}{\pi} \int_{0}^{\infty} \ln\left(1 - n\left(E\right)\right) \frac{d\delta}{dE} dE + 2R \frac{T}{\pi} \int_{0}^{\infty} \ln\left(1 - n\left(E\right)\right) \frac{dk}{dE} dE \end{split}$$

Continuum states II

The first term in the thermodynamical potential is the contribution of the bound states,

$$\Omega = T \sum_{i \in b} \ln\left(1 - n_i\right) + \frac{T}{\pi} \int_0^\infty \ln\left(1 - n\left(E\right)\right) \frac{d\delta}{dE} dE + 2R \frac{T}{\pi} \int_0^\infty \ln\left(1 - n\left(E\right)\right) \frac{dk}{dE} dE$$

The second term furnishes the contribution of resonances – the phase shift near a resonance can be written as

$$\delta(E) \approx \delta_0 + \operatorname{atan}\left(\frac{\Gamma/2}{E_R - E}\right)$$

and its derivative as

$$\frac{d\delta}{dE} \approx \frac{\Gamma/2}{\left(E - E_R\right)^2 + \Gamma^2/4} \approx \pi \delta \left(E - E_R\right)$$

which contributes to the thermodynamic potential as

$$\Omega_R = T \ln(1 - n_R)$$

The last term - the continuum contribution – diverges and is the same when V=0. We can extract the finite contribution due to the potential by taking the difference,

$$\Delta\Omega(T,\mu) = \Omega(T,\mu,V) - \Omega(T,\mu,V=0)$$

Two solutions

In 3-D, including the Coulomb interaction, this is

$$\Delta\Omega(T,\mu) = \Omega(T,\mu,V+V_C) - \Omega(T,\mu,V=V_C)$$

For given values of the chemical potentials, the Hartree-Fock equations have two solutions:

- one corresponding to a nucleus + gas, with nucleon density ρ_{NG} ;
- another corresponding to the gas, with nucleon density $\rho_{\rm G}$.

However, the solutions are unstable due to the Coulomb repulsion of the gas particles on themselves. To remedy this, only the Coulomb repulsion from the particles in the nucleus, ρ_{NG} - ρ_{G} , are included.

The thermodynamic potential is given by

$$\Delta\Omega(T, \mu, \rho_{NG} - \rho_G) = \Omega(T, \mu, \rho_{NG}, V_N) - \Omega(T, \mu, \rho_G, V_N) + \frac{1}{2} \int \left[\rho_{NG, p}(\vec{r}) - \rho_{G, p}(\vec{r})\right] \frac{e^2}{|\vec{r} - \vec{r}'|} \left[\rho_{NG, p}(\vec{r}') - \rho_{G, p}(\vec{r}')\right] d^3r d^3r' + E_{CX}$$

B. Bonche, S. Levit, and D. Vautherin, Nucl. Phys. A427 (1984) 278, 296; A436 (1985) 265.

Nuclear densities

Two self-consistent calculations are performed – for the nucleus + gas and the gas. The chemical potentials are such that Z and A correspond to $\rho_{NG} - \rho_{G}$.

RMF calculations w/pairing

- Harmonic oscillator basis – 30 major shells;

Skyrme Thomas-Fermi calculations

- Regular grid in a 1-D box;
- BSk14 and NPAPR parameter sets

BSK14 - S. Goriely, M. Samyn, J. Pearson, Phys. Rev. C 75, 064312 (2007).

NPAPR - A. W. Steiner, M. Prakash, J. M. Lattimer,

P. J. Ellis, Phys. Rep. 411, 325 (2005)

Rms radii

- Thomas-Fermi radii increase the slowest.

- The BLV radii diverge between 9 and 11 MeV, depending on the interaction.

- Without Coulomb, the BLV radii diverge at about 12 MeV.

The BLV matter radii are well fit at T< 6 MeV by

$$\left\langle r_m^2 \right\rangle = r_{m0}^2 A^{2/3} \left(1 + c_m T^2 \right)$$

with

 $r_{m0} = 0.95 \pm 0.05 \text{ fm}$ $c_m = 0.005 \pm 0.001 \text{ MeV}^{-2}$

Excitation energy and entropy

On the scale shown here,

- the excitation energy appears to vary quadratically and the entropy linearly with the temperature, in all cases, up to about 5 MeV (Fermi gas behavior);

- above 5 MeV, the calculations including only bound states begin to show saturation effects;
- Pairing and shell effects enter at low temperatures.

Pairing

The RMF calculations were performed using an extended BCS approximation and a relativistic zero-range pairing interaction. (BVC and D. Hirata, Phys. Rev. C62 (2000) 054310.)

The pairing energy has the typical energy dependence and decreases to zero below T=1.5 MeV.

Shell effects

The RMF calculations also showed the effects of shell closures. To get an idea of their importance we looked at

$$\chi^{2} = \sum_{T_{min}}^{T_{max}} \left(E_{RMF}(T) - E_{0} - c_{0}T^{2} \right)^{2}$$

where T_{max} = 6 MeV and T_{min} was varied between 1 and 3 MeV.

Liquid-drop model fit to the energy

- Due to the effects of pairing and shell closures, ground state energies cannot be used a a reference for the functional dependence of the excitation energy at high energy.

- Both the constant and temperature dependent terms must be fit.
- We take

$$E = c_1 A + c_2 A^{2/3} + c_4 A d^2 + c_5 A^{1/3} + c_6 \frac{Z(Z-1)}{A^{1/3}} + (c_7 A + c_8 A^{2/3} + c_9 A d^2) T^2$$

where

$$d = \frac{1}{(1 + c_3 A^{-1/3})} \frac{N - Z}{A}$$

Fits were performed using

- RMF and Skyrme T- F calculations
- 180 nuclei with $8 \le Z \le 82$ and $12 \le A \le 250$
- temperatures in the range 2 MeV \leq T \leq 6 MeV.

Liquid-drop model fit to the energy II

The parametrization:

$$E = c_1 A + c_2 A^{2/3} + c_4 A d^2 + c_5 A^{1/3} + c_6 \frac{Z(Z-1)}{A^{1/3}} + (c_7 A + c_8 A^{2/3} + c_9 A d^2) T^2$$

where

$$d = \frac{1}{(1 + c_3 A^{-1/3})} \frac{N - Z}{A}$$

Modelos	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8	c_9	χ^2/N
BSk14	-14.71	11.73	0.655	27.29	6.94	0.664	0.064	0.077	-0.091	3.5
NRAPR	-14.35	9.98	0.718	28.24	9.17	0.649	0.057	0.087	-0.095	3.6
DD-ME1	-15.83	21.16	1.042	32.79	-7.79	0.675	0.062	0.093	-0.112	7.0
NL3	-15.27	17.68	1.145	32.47	-1.88	0.650	0.059	0.090	-0.085	6.6
G.S.	-15.8	18.3	0.0	23.7	0.0	0.714	0.0625	0.139	0.0	

- Skyrme volume and surface terms are smaller than those in G.S. fit;
- Symmetry energy term c_4 is higher because of c_3 dependence not in G.S. Fit;
- Temperature-dependent volume and surface terms c_7 and c_8 smaller.

Symmetry energy

The symmetry energy is found to be

$$E_{sym} \approx Ad^2 \left(30 - 0.1T^2 \right) \text{ MeV}$$

It is about 10% below its ground state value at a temperature of 6 MeV. Why does it decrease? The principal effect is the volume expansion. With

Equilibrium

The compound nucleus is assumed to be in equilibrium. We estimate the local equilibration time in terms of the typical width of a shell-model state

 $\hbar/\tau_{eq} = \Gamma_{eq} \approx 20 \text{ MeV}$ N. Frazier, B.A. Brown, V. Zelevinsky, Phys. Rev. C54 (1996) 1665.

The width of the BLV nucleus can be estimated in terms of the incident gas flux n(e) as well as in terms of its Weisskopf decay width.

$$\Gamma_{BLV} \approx \hbar \langle \sigma v n \rangle = \frac{g\mu}{\pi^2 \hbar^2} \int e \sigma(e) n(e) de$$

$$\Gamma_{W} = \frac{g\mu}{\pi^{2}\hbar^{2}} \int e \,\sigma_{inv}\left(e\right) \frac{\rho_{f}\left(\varepsilon_{0} - Q - e, 0\right)}{\rho_{cn}\left(\varepsilon_{0}, 0\right)} de$$

Summary

- As expected, a nucleus expands as it is heated. The nuclear radius grows approximately quadratically with the temperature and is about 10% larger than the ground state radius at 6 MeV.

- The excitation energy also grows approximately quadratically with the temperature, except at temperatures below about 2 MeV, where pairing and shell effects are important.

- The symmetry energy is temperature dependent and decreases by about 10% from the ground state value at a temperature of 6 MeV.

- The calculations suggest that nuclei are unstable due to Coulomb repulsion at temperatures above about 8 MeV.

- Decay times suggest that an equilibrated hot nucleus cannot exist at temperatures of more than 5 or 6 MeV.

Things to do

- Improve the description of the geometry

$$\left\langle r^2 \right\rangle \to \frac{1}{1 + \exp\left[\left(r - R\right)/a\right]}$$

- Study fluctuations – in radius and deformation, at least

- Clusters – detailed balance?

$$\omega_{fn}(\varepsilon_{0}) = \prod_{l=1}^{k} \frac{1}{N_{l}!} \left(\frac{V}{(2\pi\hbar)^{3}} \right)^{n-1} \int \prod_{j=1}^{n} d^{3}p_{j} \delta\left(\sum_{j=1}^{n} \vec{p}_{j} \right)$$
$$\times \int \prod_{j=1}^{n} \left(\omega_{bj}(\varepsilon_{j}) d\varepsilon_{j} \right) \delta\left(\varepsilon_{0} - B_{0} - E_{c0} - \sum_{j=1}^{n} \left(\frac{p_{j}^{2}}{2m_{j}} + \varepsilon_{j} - B_{j} - E_{cj} \right) \right)$$