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Motivation

- One would expect nuclei to grow bigger as they become hotter. How 

much bigger?

- How does the change in size affect statistical properties? What is the 

relationship between excitation energy, entropy and temperature?

- What is the limiting excitation energy or temperature above which the 

nucleus does not exist?

- In short, what can we expect when a nucleus gets hotter and hotter?



 

Finite temperature formalism

In the Hartree-Fock approximation, one uses the single-particle density operator

 with Z
0
 the grand canonical partition function,

to define the thermodynamical potential

where the entropy is given by 

and N(D) and Z(D) are the neutron and proton number operators and µ
n
 and µ

p
 the 

associated chemical potentials.

The Hartree-Fock equations are obtained by minimizing the thermodynamical potential with 

respect to the wavefunctions,  

The single-particle occupations that result are



 

Bound states only

At low temperature, only bound single particle states have non-neglible occupations. 

At higher temperatures, we can artificially restrict the occupations so that only bound 

single-particle states are occupied. 

Two calculations:

- Hartree RMF;

- NL3 and DD-ME1 parameter sets;

- Harmonic oscillator basis;

- 30 major shells.

Anomalous behavior at 8 MeV, but 

artificially restricted  anyway.

NL3 – G.A. Lalazissis, J. König and P. Ring, Phys.Rev. C 55, 540 (1997).

DD-ME1 – T. Niksic, D. Vretenar, P. Finelli, and P.Ring, Phys. Rev. C 66, 024306 (2002).



 

Continuum states

Consider scattering from a potential V(x) in a 1-D box [-R,R] with the condition that 

the wave function is zero on the edges of the box.

For a positive energy continuum state, this implies that

V-R R
where δ(E) is the phase shift due to scattering from the 

potential.

The density of continuum single-particle states is

so that the thermodynamic potential can be written as the sum of three contributions



 

Continuum states II

The first term in the thermodynamical potential is the contribution of the bound states,

The second term furnishes the contribution of resonances – the phase shift near 

a resonance can be written as

and its derivative as 

which contributes to the thermodynamic potential as

The last term  - the continuum contribution – diverges and is the same when V=0. 

We can extract the finite contribution due to the potential by taking the difference,



 

Two solutions

In 3-D, including the Coulomb interaction, this is

For given values of the chemical potentials, the Hartree-Fock equations have two 

solutions:

- one corresponding to a nucleus + gas, with nucleon density ρ
NG

;

- another corresponding to the gas, with nucleon density ρ
G
.

However, the solutions are unstable due to the Coulomb repulsion of the gas 

particles on themselves. To remedy this, only the Coulomb repulsion from the 

particles in the nucleus, ρ
NG 

- ρ
G
, are included.

The thermodynamic potential is given by 

B. Bonche, S. Levit, and D. Vautherin, Nucl. Phys. A427 (1984) 278, 296; A436 (1985) 265.



 

Nuclear densities

Two self-consistent calculations are performed 

– for the nucleus + gas and the gas.

The chemical potentials are such that Z and A 

correspond to ρ
NG 

– ρ
G
 .

RMF calculations w/pairing

 - Harmonic oscillator basis – 30 major shells;

Skyrme Thomas-Fermi calculations 

- Regular grid in a 1-D box;

- BSk14 and NPAPR parameter sets

BSK14 - S. Goriely, M. Samyn, J. Pearson, Phys. 

Rev. C 75, 064312 (2007). 

NPAPR - A. W. Steiner, M. Prakash, J. M. Lattimer, 

P. J. Ellis, Phys. Rep. 411, 325 (2005)



 

Rms radii

- Radii including only bound states 

increase fastest but saturate.

- Thomas-Fermi radii increase the 

slowest.

- The BLV radii diverge between 9 

and 11 MeV, depending on the 

interaction. 

- Without Coulomb, the BLV radii 

diverge at about 12 MeV.

The BLV matter radii are well fit  at T< 6 MeV by  

with



 

Excitation energy and entropy

On the scale shown here,

- the excitation energy appears to vary quadratically and the entropy linearly with 

the temperature, in all cases, up to about 5 MeV (Fermi gas behavior);

- above 5 MeV, the calculations including only bound states begin to show 

saturation effects;

-  Pairing and shell effects enter at low temperatures.



 

Pairing

The RMF calculations were performed using an extended BCS approximation and  a 

relativistic zero-range pairing interaction. (BVC and D. Hirata, Phys. Rev. C62 (2000)  054310.)

The pairing energy has the typical energy dependence and decreases to zero below  

T=1.5 MeV.



 

Shell effects

The RMF calculations also showed the effects of shell closures. To get an idea of 

their importance we looked at 

where T
max

 = 6 MeV and T
min

 was varied between 1 and 3 MeV.



 

Liquid-drop model fit to the energy

- Due to the effects of pairing and shell closures, ground state energies cannot be used a 

a reference for the functional dependence of the excitation energy at high energy.

- Both the constant and temperature dependent terms must be fit. 

- We take  

where

Fits were performed using 

 - RMF and Skyrme T- F calculations 

- 180 nuclei with 8 ≤ Z ≤ 82 and 12 ≤ A ≤ 250

-  temperatures in the range 2 MeV ≤ T ≤ 6 MeV. 



 

Liquid-drop model fit to the energy  II

The parametrization:

where

- Skyrme volume and surface terms are smaller than those in G.S. fit;

- Symmetry energy term c
4
 is higher because of c

3
 dependence not in G.S. Fit;

- Temperature-dependent volume and surface terms – c
7
 and c

8
 – smaller. 



 

Symmetry energy

The symmetry energy is found to be 

It is about 10% below its ground state value at a temperature of 6 MeV.

Why does it decrease?   The principal effect is the volume expansion.

With

we have

where



 

Equilibrium

The compound nucleus is assumed to be in equilibrium. We estimate the local 

equilibration time in terms of the typical width of a shell-model state 

N. Frazier, B.A. Brown, V. Zelevinsky, Phys. Rev. C54 (1996) 1665. 

The width of the BLV nucleus can be 

estimated in terms of the incident gas flux 

n(e) as well as in terms of its Weisskopf 

decay width.



 

Summary

 - As expected, a nucleus expands as it is heated. The nuclear radius grows 

approximately quadratically with the temperature and is about 10% larger than the 

ground state radius at 6 MeV.

- The excitation energy also grows approximately quadratically with the temperature, 

except at temperatures below about 2 MeV, where pairing and shell effects are 

important.

- The symmetry energy is temperature dependent and decreases by about 10% from 

the ground state value at a temperature of 6 MeV.

- The calculations suggest that nuclei are unstable due to Coulomb repulsion at 

temperatures above about 8 MeV.

- Decay times suggest that an equilibrated hot nucleus cannot exist at temperatures of 

more than 5 or 6 MeV. 



 

Things to do

- Improve the description of the geometry

- Study fluctuations – in radius and deformation, at least

- Clusters – detailed balance?
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