3rd International Symposium on Nuclear Symmetry Energy (NuSYM13) NSCL/FRIB, East Lansing, Michigan, U.S.A. 22-26 July, 2013

Plan for the Nuclear Symmetry Energy Measurements at RAON, LAMPS Facility

Byungsik Hong (Korea University)

Outline

- 1. Introduction to RISP
 - Rare Isotope Science Project in Korea
 - RAON rare isotope beam facility
- 2. KOBRA
 - Broad acceptance recoil spectrometer at lowenergy experimental area
- 3. LAMPS
 - Large-acceptance multipurpose spectrometer
 - A dedicated system for symmetry energy at high-energy experimental area
 - In addition, low-energy LAMPS will be also built and used at KOBRA for symmetry energy
- 4. Summary

RAON

Beam Parameters of RAON

	Driver Linac			Post Acc.	Cyclotron	
Particle	H+	O ⁺⁸	Xe ⁺⁵⁴	U ⁺⁷⁹	RI beam	proton
Beam energy (MeV/u)	600	320	251	200	18.5	70
Beam current (pµA)	660	78	11	8.3	_	1000
Power on target (kW)	>400	400	400	400	_	70

RI Yield Estimation

 $Y_{\text{ISOL}} = \boldsymbol{\Phi}_{\text{P}} \boldsymbol{\sigma}_{\text{f}} N_{\text{target}} \boldsymbol{\varepsilon}_{\text{release}} \boldsymbol{\varepsilon}_{\text{ionization}} \boldsymbol{\varepsilon}_{\text{cooler}} \boldsymbol{\varepsilon}_{\text{transport}} \boldsymbol{\varepsilon}_{\text{charge-breeding}} \boldsymbol{\varepsilon}_{\text{acceleration.}}$

¹³²Sn intensities for 10 kW and 35 kW ISOL targets

- BERTINI-ORNL model for 2.5 g/cm³ target
- Assuming overall efficiency of ~0.5 %

	10 kW	35 kW
Deposited power (kW)	5.1	32.2
In-target fission rate (s ⁻¹)	1.6 x 10 ¹³	7.3 x 10 ¹³
In-target ¹³² Sn production rate (s ⁻¹)	2.3 x 10 ⁹	9.7 x 10 ⁹
¹³² Sn release rate (s ⁻¹)	2.2 x 10 ⁹	8.2 x 10 ⁹
Experimental hall (s ⁻¹)	1.1 x 10 ⁷	4.1 x 10 ⁷

B.-H. Kang at RISP/IBS

IF Design

Production target at F0: Be, Graphite

Main Parameters of IF Separator

C. C. Yun, RISP/IBS

Parameter	Design Goal		
Angular acceptance	90 mrad (H), 100 mrad (V)		
Momentum acceptance	8%		
Maximum rigidity	10 Tm		
Momentum dispersion	2.7 cm/% @F6 & F8		
Resolving power (p/ Δ p)	1,350 @F6 & F8		

Note that ~10³ times higher than 136 Xe (350 MeV/u, 10 pnA)+Be.

¹¹⁸Tc

1.4

Research Topics

- Exotic nuclei near the neutron drip line
- Equation-of-state (EoS) of nuclear matter

- Stage 1 (F0~F3): Production and separation of RIBs by inflight method with high-intensity stable ion beams from ECRs
- Experimental target at F3 (available space of ~3 m): In-beam γ-ray spectroscopy, Symmetry energy & charged particle spectroscopy, Spin dependence, etc.
- Stage 2 (F3~F5): Big-bite spectrometer with Wien filter

Target and Detection Systems for KOBRA

Supersonic gas-jet target

KOBRA

KOBRA: Physics Program

- 1. Nuclear structure
 - Comparison of the nuclear structures for the isobaric mirror nuclei at drip lines (charge symmetry and/or independence)
 - Resonant conditions of unbound nuclear states
 - Spin dependence of basic properties
- 2. Nuclear astrophysics
 - Capture reactions: (p, γ), (α , γ), (n, γ)
 - Transfer reactions: (d,p), (α ,p), etc.
 - Resonant scattering: p and α resonant elastic scattering
- 3. Rare events
 - Super-heavy elements
 - Decay spectroscopy
- 4. Nuclear symmetry energy
 - Charged particle and neutron productions in central collisions
 - Electric dipole excitations

New Neutron-Rich Heavy Nuclei

"High Intensity Stable Beams in Europe" NUPECC Report (July 2007)

⁴⁴Ti(α,p)⁴⁷V Reaction

INTEGRAL

Gamma Ray Emission from Cassiopeia A

29 Sep 2006

Supernovae and their remnants are the main galactic nucleosynthesis sites. Few radioactive isotopes are accessible to gamma-ray astronomy for probing these stellar explosions. Among them, ⁴⁴Ti is a key isotope for the investigation of the inner regions of supernovae and their young remnants.

INTEGRAL

INTEGRAL finds titanium in supernova remnant 1987A

17 Oct 2012

Astronomers using INTEGRAL have detected the first direct signature of titanium-44 in the remnant of the nearby supernova 1987A. The discovery reveals a large amount of this key isotope in the remnant, equivalent to 0.03 per cent the mass of the Sun. This value is close to upper bounds from theoretical predictions and exceeds the amount of titanium-44 observed in Cassiopeia A - the only other supernova remnant where this isotope has been found. The amount of titanium-44 found in SNR 1987A demonstrates that its radioactive decay has been powering the source for the past 22 years.

⁴⁴Ti(α,p)⁴⁷V Reaction

Order of Importance of Reactions Producing $^{44}\mathrm{Ti}$ at $\eta=0$						
Reaction Rate Multiplied by 1/100		REACTION RATE MULTIPLIED BY 100				
Reaction	⁴⁴ Ti Change (percent)	Reaction	⁴⁴ Ti Change (percent)			
$^{44}{ m Ti}(\alpha, p)^{47}{ m V}$	+173	${}^{45}V(p, \gamma){}^{46}Cr$	- 98			
$\alpha(2\alpha, \gamma)^{12}C$	-100	$\alpha(2\alpha, \gamma)^{12}C$	+67			
$^{40}Ca(\alpha, \gamma)^{44}Ti$	-72	${}^{44}\text{Ti}(\alpha, p){}^{47}\text{V}$	-89			
$^{45}V(p, \gamma)^{46}Cr$	+ 57	$^{44}\text{Ti}(\alpha, \gamma)^{48}\text{Cr}$	-61			
5^{7} Ni(p, γ) 5^{8} Cu	-47	57 Co $(p, n){}^{57}$ Ni	+25			
${}^{57}Co(p, n){}^{57}Ni$	-33	40 Ca(α , γ) 44 Ti	+22			
$^{13}N(p, \gamma)^{14}O$	-16	57 Ni (n, γ) ⁵⁸ Ni	+10			
${}^{58}{\rm Cu}(p, \gamma){}^{59}{\rm Zn}$	-14	54 Fe(α , <i>n</i>) 57 Ni	+9.4			
${}^{36}Ar(\alpha, p){}^{39}K$	-11	${}^{36}Ar(\alpha, p){}^{39}K$	+5.5			
$^{12}C(\alpha, \gamma)^{16}O$	+ 3.5	${}^{36}\mathrm{Ar}(\alpha, \gamma){}^{40}\mathrm{Ca}$	+ 5.3			

Measurement at FMA at Argonne Nat. Lab. ⁴⁴Ti intensity of ~5 x 10⁵ s⁻¹

The et al., Astrophys. J. 504 (1998)

- Presently, TRIUMF, CERN, CNS CRIB are working on this reaction.
- At RISP, the direct measurement will be possible with an active target in the IF mode of KOBRA.

Sonzogni et al., Phys. Rev. Lett. 84 (2000)

EOS & Symmetry Energy

Symmetry Energy

A.W. Steiner, M. Prakash, J.M. Lattimer and P.J. Ellis, Physics Report 411, 325 (2005)

Symmetry Energy & Neutron Stars

- Neutron star stability against gravitational collapse
- Determine stellar density profile and internal structure
- Observational consequences
 - Cooling rates of proto-neutron stars
 - Stellar masses, radii & moment of inertia from temperatures & luminosities of X-ray bursters
- M vs. R relationship
 - Uncertainty of softness of EOS and influence of *E*_{sym}
- Need to provide additional laboratory constraints at specific densities

22-26 July 2013

Experimental Observables

1. Particle ratios of mirror nuclei and pions

- n/p, ³H/³He, ⁷Li/⁷Be, π^{-}/π^{+} , etc.
- 2. Collective flow
 - Directed (or sideward) and elliptic flow parameters of n, p, and heavier fragments
- 3. Various isospin-dependent phenomena
 - Isoscaling in nuclear multifragmentation
 - Isospin transport/diffusion
- 4. Electric dipole resonances
 - Energy spectra of the excitation energy and/or gammas
 - PDR~the size of n-skin for unstable nuclei

Experimental Requirements

- 1. We need to accommodate
 - Large acceptance
 - Precise measurement of momentum (or energy) for variety of particle species, including $\pi^{+/-}$ and neutrons, with high efficiency
 - Gamma detection for electric dipole resonances
 - Keep flexibility for other physics topics
- 2. This leads to the design of **LAMPS**
 - Large-acceptance Multipurpose Spectrometer
 - Low-energy LAMPS at F3 of KOBRA
 - High-energy LAMPS

Time Projection Chamber

- Simulation with triple GEM readouts at both ends by Garfield++
 - Gas mixture: Ar 90%+CO₂ 10%, Voltage for each foil: 450 V
 - <Gain>~1.4X10⁶, <Drift velocity>~50 mm/µs
 - <Dispersion> after 60 cm (maximum drift distance) < 3 mm

Time Projection Chamber

Genie Jhang (Korea Univ.)

 Color scale: the number of electrons in each pad

- Pad
 - Shape: hexagonal
 - Total number
 90,000 for 2.5 mm
 20,000 for 5 mm
- Signal processing
 - GET: General Electronics for TPC

Neutron Detector Array

Kisoo Lee & Eunah Joo (Korea Univ.) 1.7 m 2 m veto of each bar: 10X10 cm²

- Construction of the prototype and test with radiation sources
 - Dimension: 0.1X0.1X1.0 m³
 - Sources: ⁶⁰Co and ²⁵²Cf
 - Time resolution: 488 ps, Position resolution: ~8 cm for CFD

Neutron Detector Array

Dipole Spectrometer

Dipole Spectrometer

Songkyo Lee (Korea Univ.) & Chong Cheoul Yun (RISP/IBS)

- Photoabsorption measurements
 - PDR/GDR measurements via
 ^{124,130,132}Sn+²⁰⁸Pb, ^{68,70,72}Ni+²⁰⁸Pb, ^{50,54,60}Ca+²⁰⁸Pb, etc.
 - 1n and 2n removal cross sections for unstable nuclei
 - Measuring E* from beam fragment, n's, and $\gamma {\rm 's}$
- For example, 2n transfer reaction is important for the structure

Summary

- 1. RAON
 - First large-scale facility for nuclear physics in Korea
- 2. KOBRA
 - Broad acceptance recoil spectrometer at low-energy experimental area
 - To cover nuclear structure, nuclear astrophysics, superheavy elements, and nuclear symmetry energy
- 3. LAMPS
 - Large-acceptance multipurpose spectrometer at highenergy experimental area
 (Low-energy version of LAMPS at KOBRA)
 - Primary purpose is to measure the nuclear symmetry energy at sub- and supra-saturation densities
 - Useful also to study various photoabsorption processes and transfer reactions