Towards a model-independent constraint of the high-density dependence of the symmetry energy

M.D. Cozma

IFIN-HH Magurele-Bucharest, Romania

"NuSYM13" NSCL/FRIB, East Lansing, USA 22-26 July 2013

Symmetry Energy

EoS of Asymmetric Nuclear Matter

$$E(\rho,\beta) = E(\rho,\beta=0) + S(\rho)\beta^{2} \quad \beta = \frac{\rho_{n} - \rho_{p}}{\rho}$$
$$S(\rho) = S(\rho_{0}) + \frac{L_{sym}}{3} \frac{\rho - \rho_{0}}{\rho_{0}} + \frac{K_{sym}}{18} \frac{(\rho - \rho_{0})^{2}}{\rho_{0}^{2}}$$

Theoretical estimates of L and K

B.A. Li et al. Int.J.Mod.Phys. E7, 147 (1998)

Force	Paris	SKM^*	SI'	SIII	DHF (b)	Dhf (e)
L	68.8	45.78	35.34	9.91	132	138
K_{sym}	37.56	-155.9	-259.1	-393.7	466	276

Experiment

isospin diffusion/neutron skin thickness of Pb: L_{sym} ~ 65 MeV B.A. Li *et al.* PRC 72,064611 (2005)

giant monopole resonances: K_{sym} -566 +/- 1350 MeV; 34 +/- 159 MeV S. Shlomo *et al.* PRC 47, 529 (1993)

See also: M.B. Tsang et al. PRC86, 015803 (2012)

Observables

symmetry potential has opposite sign for neutrons (repulsive) and protons (attractive)

Li, Li, Stoecker PRC 73, 051601 slope of double neutron to proton ratio (n/p)AB/(p/n)BA (2006)E_b=0.8A GeV; b/b_o=0 $S(u)=S_0 u^{\gamma} \quad u=\rho/\rho_0$ E =0.1A GeV; b/b =0.5 0.25 1.3 $\left(n/p\right)_{Z_{rR_{u}}}/(n/p)_{R_{uZr}}$ 1.2 0.20 1.1-1.0-0.15 ل^ے 0.10 0.9 v=0.5 v=0.5 γ=1.5 v = 1.50.7 0.05 е 0.6 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 0.00 $Y^{(0)}$ 100 200 300 400 500 600 700 800 E, (A MeV) cm neutron/proton ratio at midrapidity balance energy of transverse flow 150 $\hat{b} = 0.2 - 0.4$ m 1.0 130 -33 - $\langle p_x^{dir} \rangle = \frac{1}{N} \sum_{i=1}^{N} sign(y_i) p_x(i)$ -24 1.5 110 90 1.2 70 2.0 0.8 1.2 1.6 1.8 2.2 .4 1.2 1.0 0.0 0.2 0.4 0.6 0.8 1.0 N/Z p. (GeV/c) A. Sood, PRC84, 014611 (2011) Yong, Li, Chen PLB 650, 344 (2007)

Motivation: FOPI/FOPI-LAND

⁹⁶Zr

96 40 Zr

FOPI Collaboration: p and charged mass fragments (0.15-1.5 AGeV)

Transport Model

Quantum Molecular Dynamics (QMD):

Monte Carlo cascade + Mean field + Pauli-blocking+ in medium cross section

all 4* resonances below 2 GeV - 10 Δ^* and 11 N*

baryon-baryon collisions:

all elastic channels

inelastic channels NN \rightarrow NN^{*}, NN \rightarrow N Δ ,NN $\rightarrow \Delta$ N^{*}, NN $\rightarrow \Delta\Delta^*$, NR \rightarrow NR'

pion-absorption \Rightarrow **resonance-decay channels**: $\Delta \leftrightarrow N\pi$, $\Delta^* \leftrightarrow \Delta\pi$, $N^* \leftrightarrow N\pi$

meson production/absorption: η(547), ρ(770), ω(782), η'(958), f₀(980), a₀(980),Φ(1020)

applied to study:

-dilepton emission in HIC: K.Shekter, PRC 68, 014904 (2003);D. Cozma, PLB640,170 (2006); E.Santini PRC78,03410 -EoS of symmetric nuclear matter: C. Fuchs, PRL 86, 1974 (2001); Z.Wang NPA 645, 177 (1999) (2008) -In-medium effects and HIC dynamics: C. Fuchs, NPA 626,987 (1997); U. Maheswari NPA 628,669 (1998)

Isospin dependence of EoS

a) momentum dependent – generalization of the Gogny interaction: Das, Das Gupta, Gale, Li PRC67, 034611 (2003)

$$U(\rho,\beta,p,\tau,x) = A_u(x)\frac{\rho_{\tau'}}{\rho_0} + A_l(x)\frac{\rho_{\tau}}{\rho_0} + B(\rho/\rho_0)^{\sigma}(1-x\beta^2) - 8\tau x \frac{B}{\sigma+1}\frac{\rho^{\sigma-1}}{\rho_0^{\sigma}}\beta\rho_{\tau'} + \frac{2C_{\tau\tau}}{\rho_0}\int d^3p' \,\frac{f_{\tau}(\vec{r},\vec{p'})}{1+(\vec{p}-\vec{p'})^2/\Lambda^2} + \frac{2C_{\tau\tau'}}{\rho_0}\int d^3p' \,\frac{f_{\tau'}(\vec{r},\vec{p'})}{1+(\vec{p}-\vec{p'})^2/\Lambda^2}$$

b) momentum dependent – power law

add references:

$$U_{sym}(\rho,\beta) = \begin{cases} S_0(\rho/\rho_0)^{\gamma} - linear, stiff\\ a + (18.5 - a)(\rho/\rho_0)^{\gamma} - soft, supersoft \end{cases}$$

nucleons and resonances propagate in an isospin dependent mean field

$$U_{asym}(n^*) = U_{asym}(\Delta^0) = U^n_{asym}$$

$$U_{asym}(p^*) = U_{asym}(\Delta^+) = U^p_{asym}$$

$$U_{asym}(\Delta^{++}) = 2U^p_{asym} - U^n_{asym}$$

$$U_{asym}(\Delta^-) = 2U^n_{asym} - U^p_{asym}$$

Optical potential/NN Cross-Sections

Das, Das Gupta, Gale, Li PRC 67, 034611 (2003) Hartnack and Aichelin, PRC 49, 2801 (1994)

 $V_{opt}^{(HA)}(p-p') = V_0 + \delta \ln^2[(p-p')^2 \in +1]$ $V_0 = -54 \, MeV; \delta = 1.58 \, MeV; \epsilon = 500 \, GeV^{-2}$

Li, Machleidt PRC 49, 566 (1994)

isospin asymmetry dependence of NNCS

$$\sigma_{NN}(\rho,\beta) = \sigma_{NN}(\rho,\beta=0) \frac{m_1(\rho,\beta) m_2(\rho,\beta)}{m_1(\rho,\beta=0) m_2(\rho,\beta=0)}$$

Elliptic Flow

$$\frac{dN}{d\phi} \sim 1 + 2v_1 \cos \phi + 2v_2 \cos 2\phi$$
$$a_2 = 2v_2$$

Extra model parameters

Width of the wave packet: L

 $\Psi(\vec{r},\vec{p},t) \sim \exp(-(\vec{r},\vec{x},\vec{r})^2/L) \exp((\vec{i},\vec{x},\vec{p}))$ $f_i(\vec{r},\vec{p},t) \sim \exp(-(\vec{r},\vec{r},\vec{r})^2/L) \exp(-(\vec{r},\vec{p},\vec{r})^2/L/2)$

stability of heavy nuclei: L=8 fm²

Compressibility modulus: *K*

$$E(\rho) = E(\rho_0) + \frac{K}{18} \frac{(\rho - \rho_0)^2}{\rho_0^2}$$

K=210 MeV (soft) / 380 MeV (stiff)

Experimental data (FOPI): A. Andronic et al. Nucl. Phys. A 679, 765 (2001)

first detection of neutron squeeze-out

- Y. Leifels et al. PRL 71, 963 (1993)
- D. Lambrecht et al., ZPA 350, 115 (1994)

5.5<b<7.5γ=0.58±0.27 / 0.35±0.44

γ=1.01±0.21 / 0.98±0.35

γ=0.99±0.28 / 0.85±0.47

 $\mathbf{V}_{2}^{n}/\mathbf{V}_{2}^{h}$

 V_{2}^{n}/V_{2}^{p}

P. Russotto et al. PLB 697, 471 (2011)

UrQMD model (upgrades):

Q. Li et al. PRC 83, 044617 (2011) Y.Wang et al., nucl-th 1305.4730 (2013)

Model dependence & FOPI-LAND

optical potential & symmetry energy

see also L.Zhang et.al Eur.Phys.J. A48, 30 (2012)

wave function width (L) and compressibility modulus (K)

K=190÷280 MeV L=2.5÷7.0 fm²

M.D. Cozma et al. ArXiv:1305.5417 [nucl-th]

Constraints on Asy-EoS

 $x = -1.50^{+1.75}_{-1.00}$

flow difference:

 $x = -1.25^{+1.25}_{-1.00}$

M.D. Cozma et al. ArXiv:1305.5417 [nucl-th]

Density dependence of SE

studies presented in

M.D. Cozma PLB 700, 139 (2011) P. Russotto et al. PLB 697, 471 (2011) M.D. Cozma et al. ArXiv:1305.5417 [nucl-th]

-Independently developed transport codes and upgrades QMD – Tuebingen/ upgraded in Bucharest UrQMD – Frankfurt/ upgraded Q.Li et al. Huzhou (China)

-different parametrizations of the symmetry energy - momentum dependent (QMD) / momentum independent (UrQMD)

-inclusion of in-medium effects

-in medium NN cross-section (both QMD and UrQMD)

-thorough study of various model parameters:

- width of nucleon wave-function (L)
- compressibility modulus of nuclear matter (K)
- impact of optical potential

[MeV]

A note on light mass fragments

- phase space coalescence model:

Y.Zhang et al. PRC 85, 051602R (2012)

- modest goal: describe FOPI neutron, proton, deuteron, Z=1 multiplicities

-prescription for spurious clusters (guided by exp. fraction of free neutrons/protons)

2n → n + n	4n → n + ³H	5He → n + ⁴ He
$2p \rightarrow {}^{2}H + \pi^{+}$	4p → p + ³ He	5Li → p + ⁴ He
3n → ³H + π⁻	3np → n +³H	$5Be \rightarrow 2p + {}^{3}He$
$3p \rightarrow {}^{3}He + \pi^{+}$	3pn → p + ³He	$6Be \rightarrow 2p + {}^{4}He$

on the topic see also A. Le Fevre et al., talk at ASYEOS 2012 G-C. Yong et al. PRC 80, 044608 (2009)

Summary & Outlook

-Elliptic flow observables – sensitive to the density dependence of symmetry energy

-Thorough study of model dependence

-Similar extracted constraints of the density dependence of symmetry energy

OUTLOOK:

- reduce model dependence by describing a larger set of observables
- more accurate experimental data (ASYEOS, NEULAND)

will also help push the constraints towards higher density regions

- extend the analysis to light mass fragments
- pion ratios a test of our understanding of hadronic interactions: constraints from elliptic flow observables may serve as a benchmark

