

Correlating the density dependence of the symmetry energy to neutron skins and neutron-star properties Farrukh J Fattoyev Texas A&M University-Commerce

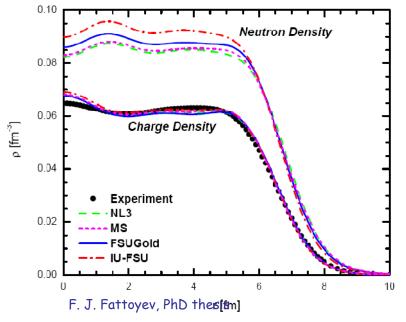
My TAMUC collaborators: B.-A. Li, W. G. Newton My outside collaborators: J. Piekarewicz (FSU), C. J. Horowitz (IU), G. Shen (INT), J. Xu (SINAP)

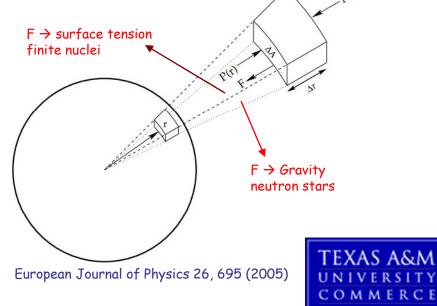
22 July – 26 July, 2013 NuSym2013 Third International Symposium on Nuclear Symmetry Energy NSCL/FRIB, East Lansing, Michigan

Outline

- 1. Motivation
- 2. Covariance analysis, its power and application (RMF)
- 3. From Heaven to Earth connecting neutron-star properties to neutron skin:
 - (a) Pure Neutron Matter
 - (b) Neutron Star Radii
 - (c) Neutron Star Cooling
 - (d) Core-Crust Transition
 - (e) Stellar Moment of Inertia
- 4. Part II: How well do we know density dependence of the nuclear symmetry energy (NSE)?

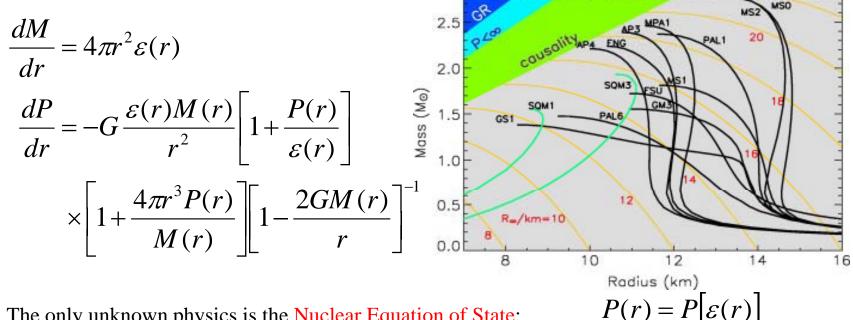
Motivation


- (a) The neutron skin thickness is highly sensitive to the pressure of pure neutron matter: the greater the pressure, the thicker is the skin as neutrons are pushed out against surface tension; PRL 85, 5296 (2000); PRL 86, 5647 (2000); Nucl. Phys. A 706, 85 (2002);
 (b) This same pressure supports neutron stars against gravitational collapse;
 - (c) Pressure of PNM at saturation is related to the density slope of the symmetry energy:


$$P(\rho_0) \approx \rho_0 L/3$$

Therefore correlations between many neutron star properties and density dependence of the symmetry energy are naturally expected.

PRL 86, 5647 (2000); PRC 64, 062802 (2001); PRC 66, 055803 (2002); ApJ 593, 463 (2003); Phys. Rep. 411, 325 (2005); Nucl. Phys. A 706, 85 (2002); PRC 82, 025810 (2010);


- 2. Our goal is to provide meaningful theoretical error-bars and to assess the degree of correlation between predicted observables by using powerful covariance analysis method;
- 3. We would also like to test the (in)compatibility of large neutron skin thickness in 208 Pb (large density slope) with current experimental and observational data.

Structure of Neutron Stars: Pressure of PNM is not the whole story

1. Neutron stars satisfy the Tolman-Oppenheimer-Volkoff equation, i.e. the Einstein's GR Equations written for a spherical perfect fluid: J. Lattimer, New Ast. Rev. 54, 101 (2010)

2. The only unknown physics is the Nuclear Equation of State:

3.

of magnitude.

- Matter in neutron stars are cold, charge neutral and in beta-equilibrium. Density spans 10-11th order
- Neutrons are not the only ingredients: significant amount of protons, electrons and muons exist (also 4. speculated that hyperons and/or quark matter exist at high densities).
- 5. Not all properties of neutron stars are expected to be sensitive probes to the density dependence of symmetry energy!

Relativistic Mean-Field Model

The effective interaction Lagrangian density:

PRL 95, 122501 (2005)

$$\mathcal{L}_{\text{int}} = \bar{\psi} \left[g_{\text{s}} \phi - \left(g_{\text{v}} V_{\mu} \gamma^{\mu} + \frac{g_{\rho}}{2} \tau \cdot \mathbf{b}_{\mu} \gamma^{\mu} \right) \right] \psi - \frac{\kappa}{3!} \left(g_{\text{s}} \phi \right)^{3} - \frac{\lambda}{4!} \left(g_{\text{s}} \phi \right)^{4} + \frac{\zeta}{4!} \left(g_{\text{v}}^{2} V_{\mu} V^{\mu} \right)^{2} + \Lambda_{\text{v}} \left(g_{\text{v}}^{2} V_{\mu} V^{\mu} \right) \left(g_{\rho}^{2} \mathbf{b}_{\mu} \cdot \mathbf{b}^{\mu} \right)$$

scalar-isoscalar vector-isoscalar

vector-isovector

and higher order interactions

For a full discussion on RMF model please refer to a talk given by Ohnishi on July 22.

Model parameters are fitted to a large body of ground state properties: binding energies, charge radii, collective excitations.

Complicated dynamics encoded in few empirical constants

- g_s, g_v Ground state properties of finite nuclei; Nuclear matter saturation
- g_{ρ} Ground state properties of heavy nuclei; Nuclear symmetry energy (NSE)
- κ, λ Isoscalar giant monopole resonance; Incompressibility of symmetric nuclear matter, K₀ Λ_v Neutron radius of heavy nuclei – Neutron star radii; Density dependence of NSE
 - Neutron star structure; maximum mass

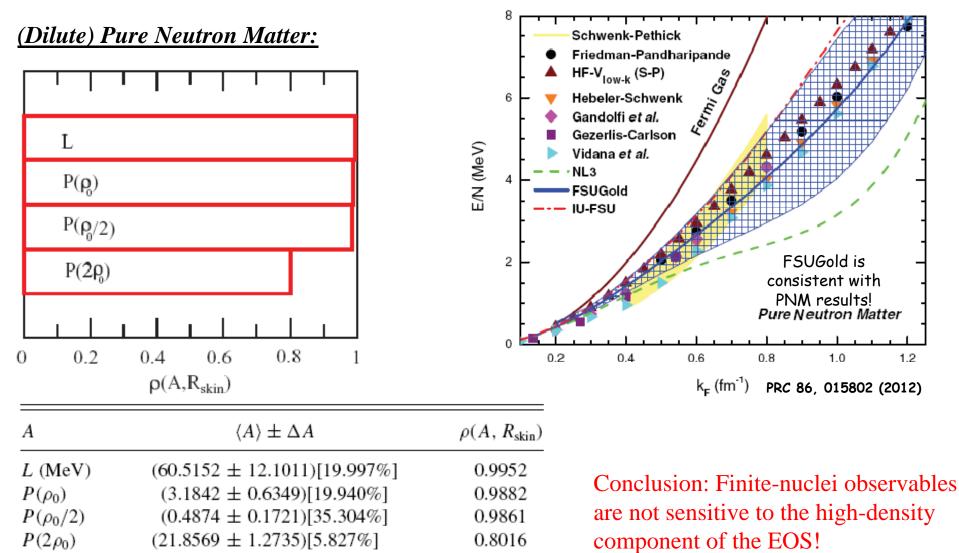
Covariance Analysis

PRC 81, 051303 (2010); PRC 84, 064302 (2011); PRC 85, 024304 (2012); PRC 86, 015802 (2012); PRC 87, 014324 (2013)

Model parameters are found by minimizing a quality measure:

$$\chi^{2}(\mathbf{p}) = \sum_{n=1}^{N} \left(\frac{\mathcal{O}_{n}^{(\text{th})}(\mathbf{p}) - \mathcal{O}_{n}^{(\text{exp})}}{\Delta \mathcal{O}_{n}} \right)^{2}$$

 $\operatorname{cov}(A, B) = \sum_{i=1}^{F} \frac{\partial A}{\partial x_i} (\hat{\mathcal{M}}^{-1})_{ij} \frac{\partial B}{\partial x_j}$

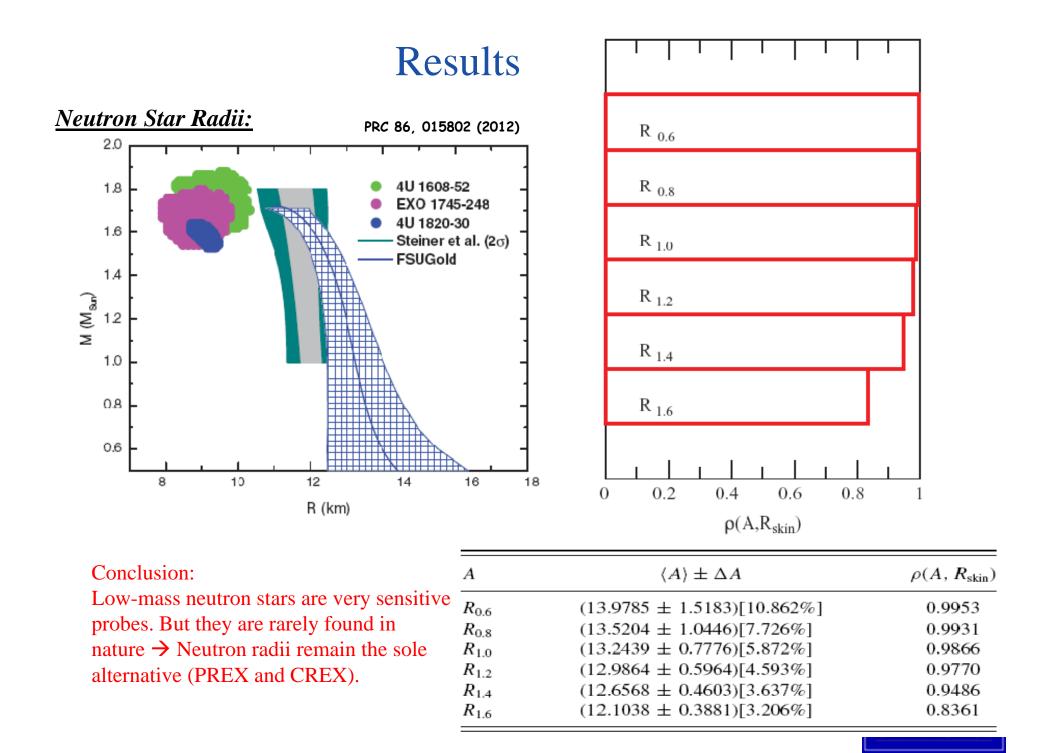

Traditionally, once the model is found, its success is gauged by predicting observables that are not included in the fit. An important physics is left behind: assessing uncertainty in the model predictions!

Covariance of two observables, A and B, are found from:

1 / 2.2 \

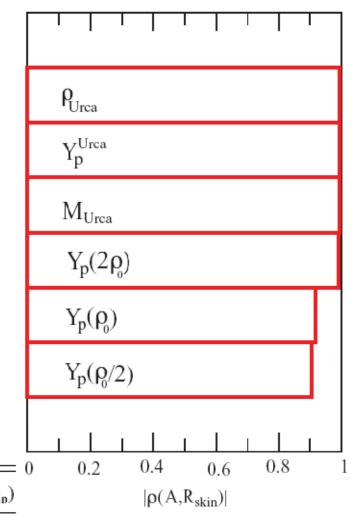
where
$$\mathcal{M}_{ij} = \frac{1}{2} \left(\frac{\partial \chi^2}{\partial x_i \partial x_j} \right)_{\mathbf{x}=0}^{*,j=1}$$

Correlation coefficient $\rho(A, B) = \frac{\operatorname{cov}(A, B)}{\sqrt{\operatorname{var}(A)\operatorname{var}(B)}},$
An example: FSUGold – accurately calibrated model to ground state properties
 $\int_{0.24}^{0.24} \int_{0.20}^{0.24} \int_{0.20}^{0.24} \int_{0.20}^{0.24} \int_{0.20}^{0.24} \int_{0.20}^{0.24} \int_{0.20}^{0.24} \int_{0.17}^{0.24} \int_{0.20}^{0.24} \int_{0.17}^{0.24} \int_{0.$


Results

Notice that correlations remains as large:

$$: \rho(L, R_{skin}^{^{48}Ca}) = 0.9826$$


Results

Direct Urca Process (fast cooling):					
$n \rightarrow p + e^- + \bar{\nu}_e,$	Simplest case:	V = 1/9			
$e^- + p \rightarrow n + v_e.$		$I_p = I/J$			

In a realistic case when muons exist, threshold proton fraction is a an EOS dependent:

 $Y_{\rm p}^{\rm Urca} \lesssim 0.15$

Models with stiff symmetry energy (large slope) favor large proton fractions at high density \rightarrow correlation; These same models (large slope) favor small proton fractions at low densities \rightarrow anticorrelation;

Α	$\langle A \rangle \pm \Delta A$	$\rho(A, R_{\rm skin}) \qquad \qquad \rho(A, R_{\rm skin}) $
$egin{aligned} & ho_{\mathrm{Urca}} & M_{\mathrm{Urca}} / M_{\odot} \ & Y_{\mathrm{p}}^{\mathrm{Urca}} & Y_{\mathrm{p}}^{\mathrm{Urca}} & Y_{\mathrm{p}}(2 ho_{0}) & Y_{\mathrm{p}}(\rho_{0}) & Y_{\mathrm{p}}(ho_{0}) & Y_{\mathrm{p}}(ho_{0}/2) \end{aligned}$	$(0.4668 \pm 0.1324)[28.359\%]$ $(1.3012 \pm 0.2658)[20.427\%]$ $(0.1367 \pm 0.0019)[1.421\%]$ $(0.1064 \pm 0.0138)[13.000\%]$ $(0.0609 \pm 0.0055)[9.055\%]$ $(0.0346 \pm 0.0051)[14.651\%]$	-0.9928 Conclusion: -0.9927 Large Urca mass threshold \rightarrow thin skin -0.9927 (small L) and vice versa. $+0.9906$ Observation of thin skin AND enhanced $+0.9166$ cooling of stars \rightarrow indicator -0.9063 TEXAS ASfor exotic coreUNIVERSITY

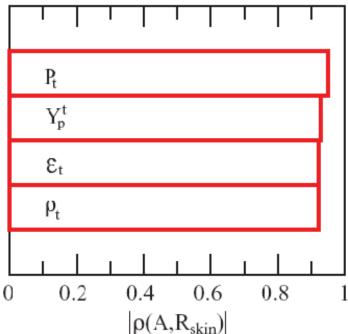
Results

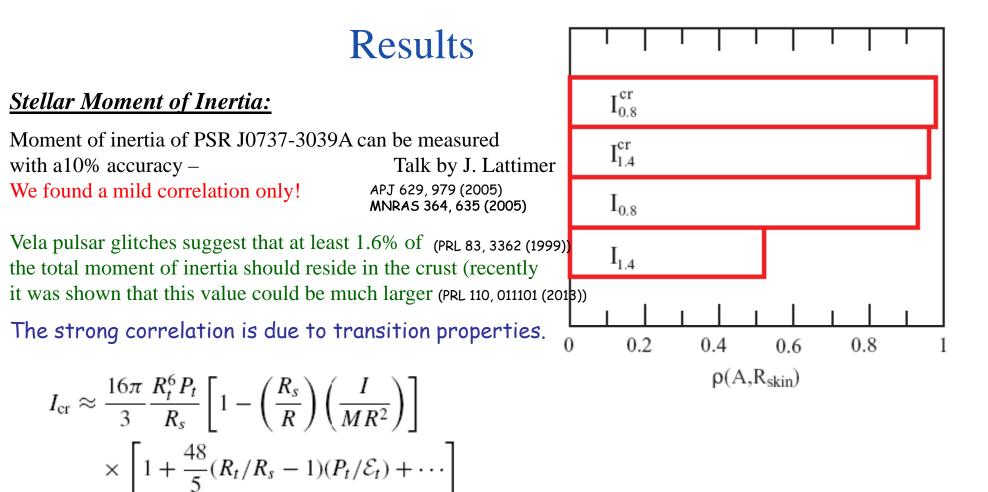
Core-Crust Transition:

Crust is believed to play important role for:

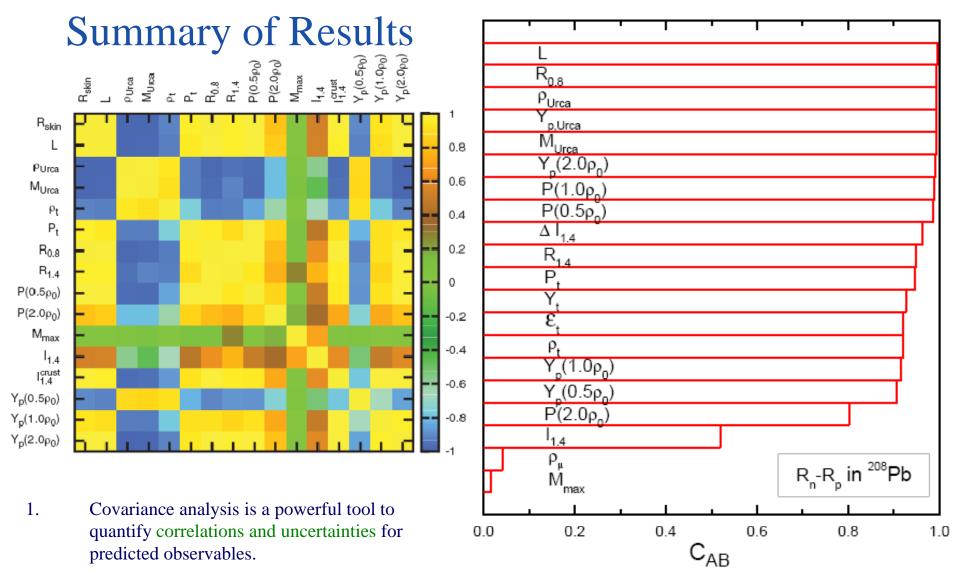
- Pulsar Glitches;
- Giant Flares (through QPO) Talk by H. Sotani
- Gravitational Waves Talk by W. G. Newton Core-crust transition density depends on the proton fraction, i.e. density dependence of NSE:

Stiff symmetry energy falls rapidly at low densities;

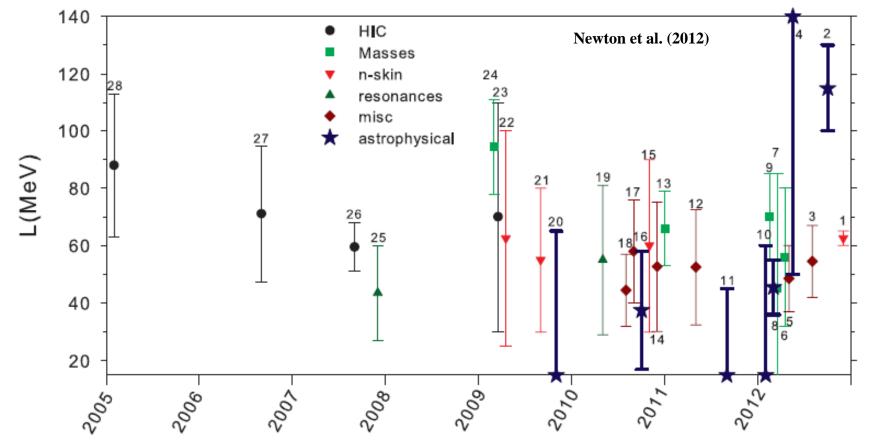

Tolerates a large isospin asymmetry;


Small proton fraction \rightarrow low transition density!

Note: Covariance analysis cannot assess systematic errors associated with the limitation of a given model. Example: A strong correlation found between the transition pressure and neutron skin. We strongly suggest to perform such analyses using other models.


PRC 82, 025810 (2010)	Α	$\langle A \rangle \pm \Delta A$	$\rho(A, R_{\rm skin})$		
EPL 91, 32001 (2010) PRC 83, 045810 (2011)	$P_{ m t} \ Y_{ m p}^{ m t} \ {\cal E}_{ m t} \ ho_{ m t}$	$(0.4020 \pm 0.1071)[26.640\%]$ $(0.0351 \pm 0.0069)[19.711\%]$ $(71.5337 \pm 5.3747)[7.514\%]$ $(0.0755 \pm 0.0056)[7.369\%]$	+0.9474 - 0.9260 - 0.9207 - 0.9203		

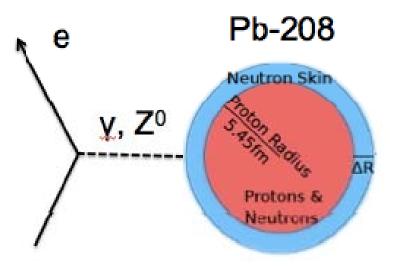
Α	$\langle A \rangle \pm \Delta A$	$\rho(A, R_{\rm skin})$
$I_{0.8}^{cr}$	(8.7777 ± 2.5612)[29.178%]	0.9781
$I_{1.4}^{cr}$	$(5.8988 \pm 1.4055)[23.827\%]$	0.9619
$I_{0.8}$	$(7.4067 \pm 0.3204)[4.326\%]$	0.9299
<i>I</i> _{1.4}	$(14.7660 \pm 0.3437)[2.327\%]$	0.5192

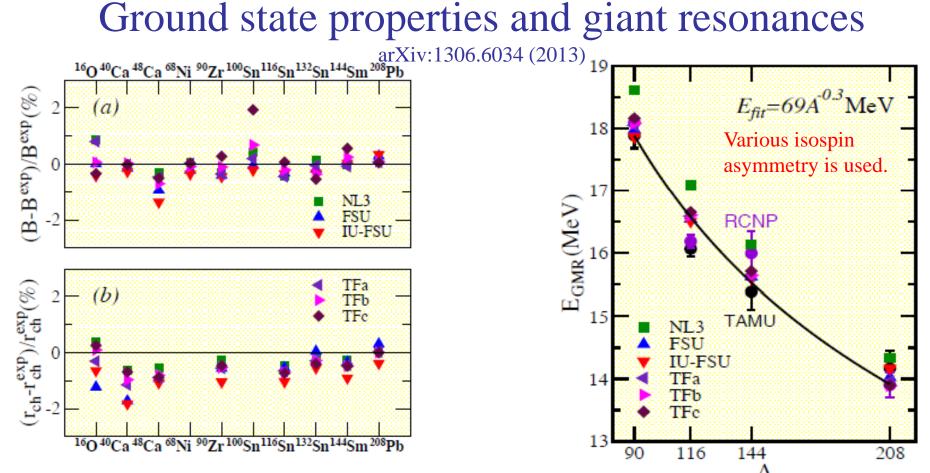

- 2. Many neutron star observables are sensitive probe to the NSE.
- 3. Example: A 20% uncertainty in determination of the slope of NSE requires a very stringent measurement on the neutron radius of lead (at a 0.7% level), or parity violating asymmetry of the order of ~2%.

 \rightarrow PREX-II (2014-15) and CREX (2016)

Part II

How thick is the neutron skin in ²⁰⁸Pb? How well do we know L?

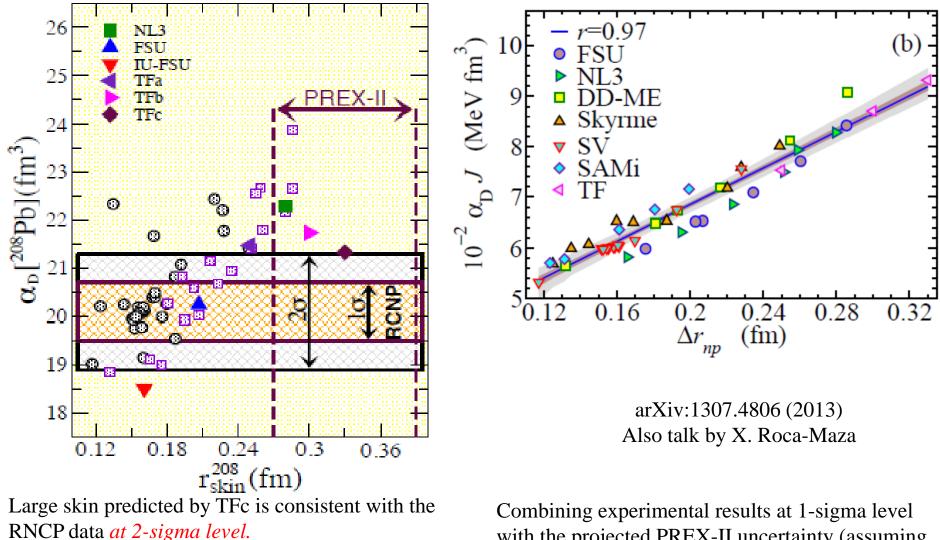



Parity Violating Electron Scattering Experiments

- PREX-I ran for two months in 2012 Talk by K. Kumar
- Purely electroweak measurement: photons are coupled to protons, Z⁰-bosons are coupled mainly to neutrons
- First electroweak results:

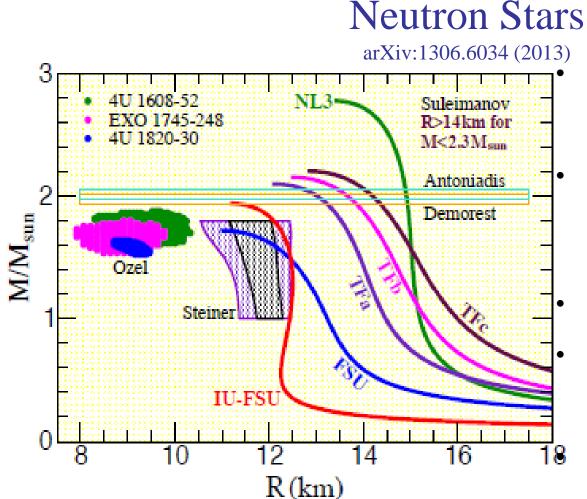
 $R_{skin} \equiv R_n - R_p = 0.33^{+0.16}_{-0.18} \, fm$

- Large error-bars: accommodate all models
- Central value is intriguing none of the nuclear EDFs predict such a large value.
- PREX-II and CREX are coming...
- Question: Is such a large value already incompatible with laboratory and astrophysical data?



#1. Ground State properties are poor isovector indicators. #2. Centroid energies place no constraint on L.

Model	$\rho_{\rm 0}({\rm fm}^{-3})$	ε_{0}	K_0	$ ilde{J}$	J	L	$K_{\rm sym}$	$r_{\rm skin}^{208}({\rm fm})$
NL3	0.148	-16.24	271.5	25.68	37.29	118.2	100.9	0.28
FSU	0.148	-16.30	230.0	26.00	32.59	60.5	-51.3	0.21
IU-FSU	0.155	-16.40	231.2	26.00	31.30	47.2	28.7	0.16
TFa	0.149	-16.23	245.1	26.00	35.05	82.5	-68.4	0.25
TFb	0.149	-16.40	250.1	27.59	40.07	122.5	45.8	0.30
TFc	0.148	-16.46	260.5	30.20	43.67	135.2	51.6	0.33


Electric dipole polarizability

arXiv:1306.6034 (2013)

Systematic uncertainties need to be addressed (Also see talk by A. Tamii)

Combining experimental results at 1-sigma level with the projected PREX-II uncertainty (assuming that central value remains in tact) rules out all current EDF models.

Results by Ozel *et al.* (2010) suggest small radii of 8-10 km (also see Guillot *et al.*) – very difficult to reconcile with model predictions;

- Additional 3 neutron stars were supplemented by Steiner *et al.* (2010) – suggest larger neutron star radii of 11-12 km (or more recently up to 13.2 km);
- Results by Suleimanov *et al.* (2011) suggest radii of >14 km;
- A recent study by Lattimer and Steiner (2013) suggests that knowledge of atmosphere composition is quite important ;

QPO results by Sotani *et al.* suggest large L, although their EOS model is very simple.

- *Conclusions:* (More discussion in the last week by J. Piekarewicz) very simple. *Much work needs to be done in both theoretical and observational front to determine the density dependence of NSE;*
- Improvements in both statistical and systematic uncertainties of future experiments and observations will and should place vital constraints on the NSE.
- For now however ruling out large neutron skin hence large L seems premature.
- What if: large L (from experiment) and low R_{NS} (from observation)? \rightarrow strong signal for exotic core. And more...

THANK YOU!