Possible constraints on density dependence of symmetry energy from oscillations in Magnetar Giant Flares

Hajime SOTANI (YITP, Kyoto Univ.)

watermelon

- how to find the best watermelon in supermarket ?
- how to know the best time to eat a watermelon ?
 - inside can not be checked before cutting
- "empirical rule"
 - to check the best time, knock a watermelon
 - high frequency "KIN-KIN" ; too young
 - "BAN-BAN" ; best time !
 - low frequency "BON-BON" ; too old
 - need many years to get this ability

- one could see interior with specific sound from object.
 - asteroseismology !!

neutron stars

- Structure of NS
 - solid layer (crust)
 - nonuniform structure (pasta)
 - fluid core (uniform matter)
- Thickness of pasta ~ 70m
- Determination of EOS for high density region could be quite difficult on Earth
- Constraint on EOS via observations
 - stellar mass and radius
 - stellar oscillations (& emitted GWs)

"(GW) asteroseismology"

• NS can be considered as a "Rosetta stone" to see physics in ultra-high density region.

Oyamatsu (1993)

QPOs in SGRs

- Quasi-periodic oscillations (QPOs) in afterglow of giant ulletflares from soft-gamma repeaters (SGRs)
 - SGR 0526-66 (5th/3/1979) : 43 Hz
 - SGR 1900+14 (27th/8/1998) : 28, 54, 84, 155 Hz
 - SGR 1806-20 (27th/12/2004) : 18, 26, 30, 92.5, 150, 626.5, 1837 Hz (Barat+ 1983, Israel+ 05, Strohmayer & Watts 05, Watts & Strohmayer 06)

- Crustal torsional oscillation?
- Magnetic oscillations ?
- Asteroseismology \rightarrow stellar properties $(M, R, B, EOS \cdots)$

torsional oscillations

- axial parity oscillations
 - incompressible
 - no density perturbations
- in Newtonian case

(Hansen & Cioff 1980)

$$_\ell t_0 \sim rac{\sqrt{\ell(\ell+1)\mu/
ho}}{2\pi R} \sim 16\sqrt{\ell(\ell+1)} \; {
m Hz} \quad \ \ _\ell t_n \sim rac{\sqrt{\mu/
ho}}{2\Delta r} \sim 500 imes n \; {
m Hz}$$

- μ : shear modulus
- frequencies \propto shear velocity $v_s = \sqrt{\mu / \rho}$
- overtones depend on crust thickness
- effect of magnetic field
 - frequencies become larger

(Sotani+ 07, Gabler+ 13)

EOS for crust region

Oyamatsu & Iida 03, 07

Bulk energy per nucleon near the saturation point of ulletsymmetric nuclear matter at zero temperature;

$$w = w_0 + \frac{K_0}{18n_0^2} (n - n_0)^2 + \left[S_0 + \frac{L}{3n_0} (n - n_0)\right] \alpha^2$$

- Calculations of the optimal density distribution of stable nuclei within Thomas Fermi theory.
 - Obtain the value of w_0 , n_0 , and S_0 for given $L \& K_0$ by fitting Z, mass, & charge radius that can be calculated from the optimal density distribution to the empirical data for stable nuclei.
 - To constrain in $L \& K_0$ with experiments on Earth may be difficult.
- phenomenological, but cover the experimental data for stable nuclei.

- region of pasta phase depends strongly on *L*
- for $L \ge 100$ MeV, pasta structure almost disappears

what we do

- EOS for core region is still uncertain. (cf. Steiner & Watts 09)
- To prepare the crust region, we integrate from r=R.
 - *M*, *R* : parameters for stellar properties
 - *L*, K_0 : parameters for curst EOS (Oyamatsu & Iida 03, 07)
- In crust region, torsional oscillations are calculated.
 - considering the shear only in spherical nuclei.
 - frequency of fundamental oscillation $\propto v_{\rm s} (v_{\rm s}^2 \sim \mu/H)$
- Comparing frequencies with QPOs, we will put a constraint on EOS parameter.

 \rightarrow almost independent of the incompressibility K_0

robust constraint on L

effect of superfluidity

- $\rho \gtrsim 4 \times 10^{11} \text{ g/cm}^3$; neutrons start to drip out of nuclei
 - some of them play as superfluid
 - how many fraction of dripped neutrons behave as superfluid ?
 - major parts may be locked to the motion of protons in nuclei (Chamel 12)
 - depending on density, $N_{\rm s}/N_{\rm d} \simeq 10$ 30% @ $n_{\rm b} \sim 0.01$ 0.4 n_0
- since torsional oscillations are transverse, superfluid neutrons can not contribute to such oscillations.
 - one show introduce the effective enthalpy

- at zero-temperature,
$$\mu_{\rm b} = H / n_{\rm b}$$
 $\overline{H} = \left(1 - \frac{N_s}{A}\right) H$

$$\mathcal{Y}'' + \left[\left(\frac{4}{r} + \Phi' - \Lambda' \right) + \frac{\mu'}{\mu} \right] \mathcal{Y}' + \underbrace{\left[\underbrace{\epsilon + p}{\mu} \omega^2 \mathrm{e}^{-2\Phi} - \frac{(\ell + 2)(\ell - 1)}{r^2} \right] \mathrm{e}^{2\Lambda} \mathcal{Y} = 0.$$

1

 \mathbf{x}

identification of SGR 1806-20

constraint on L via SGR 1806-20

identification of SGR 1900+14

constraint on L via SGR 1900+14

7/23/2013

allowed region for *L*

7/23/2013

constraint on S_0

• by using the empirical relation : $S_0 = 28 + 0.075L$ $\Rightarrow 35.6 \text{ MeV} \le S_0 \le 37.8 \text{ MeV}$

alternative possibility

instead of previous correspondence, i.e., l = 4, 8, 13 for SGR 1900+14, and l = 3, 4, 5, 15 for SGR 1806-20, we may consider alternative possibility as

26 Hz QPO observed in SGR 1806-20 remains a complete puzzle !!

relative error

• previous identification

QPOs (Hz)	1	$_{0}t_{I}$ (Hz)	error (%)
18	3	18.50	-2.79
26	4	24.82	4.53
30	5	30.96	-3.19
92.5	15	90.18	2.51

QPOs (Hz)	1	$_{0}t_{I}$ (Hz)	error (%)
28	4	27.26	2.63
54	8	53.76	4.50
84	13	86.18	-2.60

• alternative identification

QPOs (Hz)	1	$_{0}t_{l}$ (Hz)	error (%)
18	2	18.23	-1.27
26			
30	3	28.82	3.93
92.5	10	94.70	-2.38

QPOs (Hz)	1	$_{0}t_{I}$ (Hz)	error (%)
28	3	27.74	0.93
54	6	55.48	-2.74
84	9	82.29	2.04

alternative allowed region for L

7/23/2013

other constraints on L

- other constraints suggests $L \sim 60\pm 20$ MeV ?
 - this means case 2 may be faivored ??
 - if so, one has to prepare another oscillation mechanism \cdots

effect of electron screening

- contribution due to Coulomb interaction
 - Ogata, Ichimaru 1990; Strohmayer+ 1991

$$\mu = 0.1194 \times \frac{n_i (Ze)^2}{a}$$

- including effect of electron screening
 - Horowitz & Hughto 2008 : 10% reduction
 - Kobyakov & Pethick 2013

$$\mu = 0.1194 \left[1 - 0.010 Z^{2/3} \right] \frac{n_i (Ze)^2}{a}$$

effect of electron screening

- ~11.7% reduction for Z = 40

• phonon contribution is much smaller (Baiko 2012)

fundamental oscillations (Sotani 13)

- one may be identify the EOS using the observations of crustal oscillations
- independent of the stellar mass and the crust EOS, the effect of electron screening can reduce 6% of the

constraint on L

 due to the electron screening effect, constraint of *L* shifts ~14% smaller value

NuSYM13 @NSCL/FRIB, East Lansing

modified constraints on L

• adopting the reduction of frequencies due to the electron screening effect, constraints on *L* become as follows;

missing effects ??

• modification of shear modulus

blue : decrease red : increase

- size of nuclei
- electron screening (Horowitz & Hughto 08; Kobyakov & Pethick 13; Sotani 13)
- existence of pasta phase (Sotani 11; Gearheart+11; Newton+13)
- paring effect and shell effect (Deibel+13)
- **superfluidity** (Chamel 12, 13; Sotani+12; Deibel+13)
- magnetic field (Sotani+; Colaiuda & Kokkotas; Gabler+; Passamonti+; Lander+; Deibel+13)
- emission mechanism

conclusion

- asteroseismology could be powerful approach to see the interior properties of neutron stars.
 - QPOs in SGRs may be good examples to adopt the asteroseismology
- compering the torsional oscillations to the observational evidences, we can get the constraint on *L* as $L \ge 50$ MeV.
- superfluid effect enhances the frequencies of torsional oscillations.
 - $100 \le L \le 130$ MeV, if all QPOs come from torsional oscillations
 - − $58 \le L \le 85$ MeV, if QPOs except for 26 Hz QPO coms from torsional oscillations
- frequencies are reduced ~6% due to the electron screening effect, which seems to be independent of the crust EOS
 - constraint of *L* shifts ~14% smaller value
 - $87 \leq L \leq 113$ MeV or $50 \leq L \leq 73$ MeV
- we should take into account additional effects.