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watermelon 

•  how to find the best watermelon in supermarket ? 
•  how to know the best time to eat a watermelon ? 

–  inside can not be checked before cutting 
•  “empirical rule” 

–  to check the best time, knock a watermelon 
•  high frequency “KIN-KIN” ; too young 
•  “BAN-BAN” ; best time ! 
•  low frequency “BON-BON” ; too old  

–  need many years to get this ability 
•  one could see interior with specific sound from object. 

–  asteroseismology !! 
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neutron stars 
•  Structure of NS 

‒ solid layer (crust) 
‒ nonuniform structure (pasta) 
‒ fluid core (uniform matter) 

•  Thickness of pasta ~ 70m 
•  Determination of EOS for  

high density region could be 
quite difficult on Earth 

•  Constraint on EOS via observations of NS 
‒ stellar mass and radius 
‒ stellar oscillations (& emitted GWs) 
　“(GW) asteroseismology”   

•  NS can be considered as a “Rosetta stone” 
to see physics in ultra-high density region.  
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QPOs in SGRs 
•  Quasi-periodic oscillations (QPOs) in afterglow of giant 

flares from soft-gamma repeaters (SGRs) 
–  SGR 0526-66 (5th/3/1979) : 43 Hz 
–  SGR 1900+14 (27th/8/1998) : 28, 54, 84, 155 Hz 
–  SGR 1806-20 (27th/12/2004) : 18, 26, 30, 92.5, 150, 626.5, 1837 Hz 
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Strohmayer & Watts (2006) 

•  Crustal torsional oscillation ? 
•  Magnetic oscillations ? 

•  Asteroseismology 
➙ stellar properties 
   (M, R, B, EOS …) 

(Barat+	
  1983,	
  Israel+	
  05,	
  Strohmayer	
  &	
  Wa:s	
  05,	
  Wa:s	
  &	
  Strohmayer	
  06)	




torsional oscillations 
•  axial parity oscillations 

–  incompressible 
–  no density perturbations 

•  in Newtonian case 

 
–  μ: shear modulus 
–  frequencies ∝ shear velocity  
–  overtones depend on crust thickness 

•  effect of magnetic field 
–  frequencies become larger 
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(Sotani+	
  07,	
  Gabler+	
  13)	


(Hansen	
  &	
  Cioff	
  	
  1980)	


vs = µ / !



EOS for crust region 
•  Bulk energy per nucleon near the saturation point of 

symmetric nuclear matter at zero temperature; 

•  Calculations of the optimal density distribution of stable 
nuclei within Thomas Fermi theory. 
-  Obtain the value of w0, n0, and S0 for  

given L & K0 by fitting Z, mass, &  
charge radius that can be calculated  
from the optimal density distribution to  
the empirical data for stable nuclei. 

-  To constrain in L & K0 with experiments  
on Earth may be difficult. 

•  phenomenological, but cover the 
experimental data for stable nuclei. 
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pasta phase 

•  region of pasta phase depends strongly on L 
•  for L ≳ 100MeV, pasta structure almost disappears 
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the nucleon part nw + mnc
2nn + mpc2np [see Eq. (1)] and

the electron part (15). By comparing the resultant six energy
densities, we can determine the equilibrium phase.

III. EQUILIBRIUM SIZE AND SHAPE OF NUCLEI

We proceed to show the results for the equilibrium nuclear
matter configuration obtained for various sets of the EOS
parameters L and K0 as shown in Fig. 1. These parameters are
still uncertain because they are little constrained from the mass
and radius data for stable nuclei [2]. As we shall see, the charge
number of spherical nuclei and the density region containing
bubbles and nonspherical nuclei have a strong correlation
with L.

We first focus on spherical nuclei, which constitute an
equilibrium state in the low-density region. We calculate the
charge number of the equilibrium nuclide as a function of nb for
the EOS models A–I as depicted in Fig. 2. Note that the recent
GFMC calculations of the energy of neutron matter based on
the Argonne v8’ potential [15] are close to the behavior of
the model E. Hereafter we will thus call the model E as a
typical one. The result is shown in Fig. 3. For densities below
∼0.01 fm−3, the calculated density dependence of the charge
number Z is almost flat, a feature consistent with the results
in earlier investigations [1]. More important, the calculated
charge number is larger for the EOS models having smaller L,
and this difference in Z is more remarkable at higher densities.

As we shall see later in this section, this property of
Z is related to the tendency that with increasing L, the
nuclear density decreases while the density of the neutron
gas increases. Note that Z is, within a liquid-drop model [1],
determined by the size equilibrium condition relating the
Coulomb and surface energies in such a way that Z increases
with increasing surface tension. Because the Thomas-Fermi
model adopted here can be mapped onto a compressible liquid-
drop model [2], the present results may well be interpreted in
terms of the liquid-drop model. In fact we shall estimate the
surface tension from the Thomas-Fermi model as a function of
L and discuss how the surface tension depends on the nuclear
density and the neutron sea density.

We also note that the density at which the phase with
spherical nuclei ceases to be in the ground state is between
0.05 and 0.07 fm−3. This result, consistent with the results
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FIG. 3. (Color online) The charge number of spherical nuclei as
a function of nb, calculated for the EOS models A–I.
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FIG. 4. (Color online) The average proton fraction as a function
of nb, calculated for the EOS models A–I.

obtained in earlier investigations [1,7,10], will be discussed
below in terms of fission instability.

The average proton fraction, which is the charge number
divided by the total nucleon number in the cell, is plotted in
Fig. 4. We observe that the dependence of the average proton
fraction on the EOS models is similar to that of Z. We also
find that the average proton fraction basically decreases with
baryon density. This is a feature coming from the fact that as
the baryon density increases, the electron chemical potential
increases under charge neutrality and then the nuclei become
more neutron-rich under weak equilibrium.

We next consider the density region where bubbles and
nonspherical nuclei appear in equilibrium, i.e., the density
region of the “pasta” phases. We start with such a density
region calculated for the EOS models A–I. The results are
plotted in Fig. 5. Except for the model C, we obtain the
successive first order transitions with increasing density:
sphere → cylinder → slab → cylindrical hole → spherical
hole → uniform matter. A marked correlation of the upper end
of the density region with the parameter L can be observed by
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FIG. 5. (Color online) The density region containing bubbles and
nonspherical nuclei as a function of L, calculated for the EOS models
A–I. For comparison, the density corresponding to u = 1/8 in the
phase with spherical nuclei and the onset density, n(Q), of proton
clustering in uniform nuclear matter, which will be discussed in
Sec. IV, are also plotted by circles and crosses, respectively.
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what we do 
•  EOS for core region is still uncertain. (cf. Steiner & Watts 09) 
•  To prepare the crust region, we integrate from r=R. 

‒ M, R : parameters for stellar properties 
‒ L, K0 : parameters for curst EOS (Oyamatsu & Iida 03, 07)  

•  In crust region, torsional oscillations are calculated. 
‒ considering the shear only in spherical nuclei. 
‒ frequency of fundamental oscillation ∝ vs (vs2 ~ μ/H ) 

•  Comparing frequencies with QPOs, we will put a constraint on 
EOS parameter. 
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ρp	
ρs	
 density	


crust	
core	


pasta nuclei 

for bcc lattice 

7 

ni : number density of quark droplet	


Z : charge of quark droplet	


a : Wigner-Seitz radius 

(Strohmayer+	
  1991)	




torsional oscillations 
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robust constraint on L 
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L ≧ 47.4 MeV 

10 km ≦ R ≦ 14 km & 1.4 ≦ M/M⊙ ≦ 1.8 
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effect of superfluidity 
•  ρ≳ 4×1011 g/cm3; neutrons start to drip out of nuclei 

–  some of them play as superfluid 
–  how many fraction of dripped neutrons behave as superfluid ? 
–  major parts may be locked to the motion of protons in nuclei 
(Chamel 12) 

–  depending on density, Ns/Nd ≃ 10 - 30% @nb ~ 0.01 - 0.4n0 
•  since torsional oscillations are transverse, superfluid 
neutrons can not contribute to such oscillations. 
–  one show introduce the effective enthalpy 
–  at zero-temperature, μb= H / nb  
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identification of SGR 1806-20 
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1.4 M⊙ & 12 km 
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constraint on L via SGR 1806-20 
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identification of SGR 1900+14 

!" #" $%" $&"$"

$""

!'()*+,

-.*
/0
*1
23
'(4
5,

""%

""6
""!

""#

""$6

%#'45

7!'45

#!'45

L = 113.5 MeV 

7/23/2013 13 

1.4 M⊙ & 12 km 
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constraint on L via SGR 1900+14 
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allowed region for L 
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constraint on S0 
•  by using the empirical relation : 
         

! 

S0 = 28 + 0.075L

oyamatsu & Iida 03 

➡ 35.6 MeV ⩽ S0 ⩽ 37.8 MeV 

7/23/2013 16 NuSYM13 @NSCL/FRIB, East Lansing 



alternative possibility 
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26 Hz QPO observed in SGR 1806-20 remains a complete puzzle !! 
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1.4 M⊙ & 12 km 1.4 M⊙ & 12 km 

missing ! 
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instead of previous correspondence, i.e., l = 4, 8, 13 for SGR 1900+14, 
and l = 3, 4, 5, 15 for SGR 1806-20, we may consider alternative 
possibility as 



relative error 
•  previous identification 

 

•  alternative identification 

QPOs (Hz) l 0tl (Hz) error (%) 

18 3 18.50 -2.79 
26 4 24.82 4.53 
30 5 30.96 -3.19 
92.5 15 90.18 2.51 

QPOs (Hz) l 0tl (Hz) error (%) 

28 4 27.26 2.63 
54 8 53.76 4.50 
84 13 86.18 -2.60 

QPOs (Hz) l 0tl (Hz) error (%) 

18 2 18.23 -1.27 
26 --- --- --- 
30 3 28.82 3.93 
92.5 10 94.70 -2.38 

QPOs (Hz) l 0tl (Hz) error (%) 

28 3 27.74 0.93 
54 6 55.48 -2.74 
84 9 82.29 2.04 
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alternative allowed region for L 
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other constraints on L 
•  other constraints suggests L ~ 60±20 MeV ? 

–  this means case 2 may be faivored ?? 
–  if so, one has to prepare another oscillation mechanism… 
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Newton+ 12 

case	
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case	
  2	

missing 26Hz 



effect of electron screening 
•  contribution due to Coulomb interaction 

–  Ogata, Ichimaru 1990; Strohmayer+ 1991 
 
 
•  including effect of electron screening 

–  Horowitz & Hughto 2008 : 10% reduction 
–  Kobyakov & Pethick 2013 

–  ~11.7% reduction for Z = 40 
•  phonon contribution is much smaller (Baiko 2012) 
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Figure 4. (Color online) Same as figure 3, but for the radius of a Wigner-Seitz cell, a, in the unit of fm.

lattice energy due to the Coulomb interaction. In fact, the shear modulus for the bcc lattice is derived by the Monte Carlo

calculations averaged over all direction as

µ = 0.1194 × ni(Ze)2

a
, (2)

where ni, Z, and a are the ion number density, charge number inside the nucleus, and the radius of a Wingner-Seitz cell,

respectively (Ogata & Ichimaru 1990; Strohmayer et al. 1991). Most of the previous calculations for torsional oscillations in

the crust region have been done with this formula of shear modulus. However, one may have to consider the contribution due

to the inhomogeneity of electron distribution, i.e., the effect of electron screening, in the shear modulus. In practice, due to

the electron screening effect, the shear modulus can reduce about 10% compared to that without such an effect (Horowitz &

Hughto 2008). Recently, the formula for the shear modulus including the electron screening effect is also suggested as

µ = 0.1194
[
1 − 0.010Z2/3

] ni(Ze)2

a
, (3)

where the term with Z2/3 corresponds to the contribution of the electron screening effect (Kobyakov & Pethick 2013). With

this formula, one can see that the shear modulus reduces ∼ 11.7% for Z = 40 compared to that without such an effect,

which is consistent with the previous suggestion by Horowitz & Hughto (2008). Furthermore, one might consider the phonon

contribution in the shear modulus. But, since such a contribution is much smaller than that coming from a static lattice

(Baiko 2012), one can neglect it. Thus, we will calculate the frequencies of torsional oscillations in the crust region with Eqs.

(2) and (3) to examine how important the electron screening effect is.

3 CRUSTAL TORSIONAL OSCILLATIONS

We consider the torsional oscillations on the crust equilibrium configuration mentioned in the previous section. In general, to

examine oscillations of neutron stars, one should consider not only the fluid oscillations but also the spacetime oscillations.

However, the torsional oscillations are the oscillations with axial parity and do not involve the density variation during the

oscillations. Due to such a feature, one can accurately examine the frequencies of torsional oscillations with the assumption

that the metric is fixed during the oscillations, i.e., one can neglect the metric perturbations on the background (1) by

setting δgµν = 0. This treatment is well-known as the relativistic Cowling approximation. Additionally, since the background

configuration is spherically symmetric, the non-axisymmetric oscillations degenerate into the axisymmetric oscillations. So,

we consider only axisymmetric oscillations in this article. In this case, the non-zero perturbed quantity is the φ-component of

perturbed four-velocity, δuφ, which can be expressed as

δuφ = e−Φ∂tY(t, r)
1

sin θ
∂θP$(cos θ). (4)

In this expression, ∂t and ∂θ denote the partial derivative with respect to t and θ, while P$ is the %-th order Legendre

polynomial. Variable Y is corresponding to the Lagrangian displacement for the angular direction. Then, the perturbation

equation governing the torsional oscillations can be derived from the linearized equation of motion (Schumaker & Thorne

1983) as

Y ′′ +

[(
4
r

+ Φ′ − Λ′
)

+
µ′

µ

]
Y ′ +

[
ρ + p

µ
ω2e−2Φ − (% + 2)(% − 1)

r2

]
e2ΛY = 0, (5)

where we assume that the perturbation variable has a harmonic time dependence as Y(t, r) = eiωtY(r) with eigenfrequency

ω.
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Figure 4. (Color online) Same as figure 3, but for the radius of a Wigner-Seitz cell, a, in the unit of fm.

lattice energy due to the Coulomb interaction. In fact, the shear modulus for the bcc lattice is derived by the Monte Carlo

calculations averaged over all direction as

µ = 0.1194 × ni(Ze)2

a
, (2)

where ni, Z, and a are the ion number density, charge number inside the nucleus, and the radius of a Wingner-Seitz cell,

respectively (Ogata & Ichimaru 1990; Strohmayer et al. 1991). Most of the previous calculations for torsional oscillations in

the crust region have been done with this formula of shear modulus. However, one may have to consider the contribution due

to the inhomogeneity of electron distribution, i.e., the effect of electron screening, in the shear modulus. In practice, due to

the electron screening effect, the shear modulus can reduce about 10% compared to that without such an effect (Horowitz &

Hughto 2008). Recently, the formula for the shear modulus including the electron screening effect is also suggested as

µ = 0.1194
[
1 − 0.010Z2/3

] ni(Ze)2

a
, (3)

where the term with Z2/3 corresponds to the contribution of the electron screening effect (Kobyakov & Pethick 2013). With

this formula, one can see that the shear modulus reduces ∼ 11.7% for Z = 40 compared to that without such an effect,

which is consistent with the previous suggestion by Horowitz & Hughto (2008). Furthermore, one might consider the phonon

contribution in the shear modulus. But, since such a contribution is much smaller than that coming from a static lattice

(Baiko 2012), one can neglect it. Thus, we will calculate the frequencies of torsional oscillations in the crust region with Eqs.

(2) and (3) to examine how important the electron screening effect is.

3 CRUSTAL TORSIONAL OSCILLATIONS

We consider the torsional oscillations on the crust equilibrium configuration mentioned in the previous section. In general, to

examine oscillations of neutron stars, one should consider not only the fluid oscillations but also the spacetime oscillations.

However, the torsional oscillations are the oscillations with axial parity and do not involve the density variation during the

oscillations. Due to such a feature, one can accurately examine the frequencies of torsional oscillations with the assumption

that the metric is fixed during the oscillations, i.e., one can neglect the metric perturbations on the background (1) by

setting δgµν = 0. This treatment is well-known as the relativistic Cowling approximation. Additionally, since the background

configuration is spherically symmetric, the non-axisymmetric oscillations degenerate into the axisymmetric oscillations. So,

we consider only axisymmetric oscillations in this article. In this case, the non-zero perturbed quantity is the φ-component of

perturbed four-velocity, δuφ, which can be expressed as

δuφ = e−Φ∂tY(t, r)
1

sin θ
∂θP$(cos θ). (4)

In this expression, ∂t and ∂θ denote the partial derivative with respect to t and θ, while P$ is the %-th order Legendre

polynomial. Variable Y is corresponding to the Lagrangian displacement for the angular direction. Then, the perturbation

equation governing the torsional oscillations can be derived from the linearized equation of motion (Schumaker & Thorne

1983) as

Y ′′ +

[(
4
r

+ Φ′ − Λ′
)

+
µ′

µ

]
Y ′ +

[
ρ + p

µ
ω2e−2Φ − (% + 2)(% − 1)

r2

]
e2ΛY = 0, (5)

where we assume that the perturbation variable has a harmonic time dependence as Y(t, r) = eiωtY(r) with eigenfrequency

ω.
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fundamental oscillations 
•  one may be identify the EOS using the observations of 

crustal oscillations 
•  independent of the stellar mass and the crust EOS, the 

effect of electron screening can reduce 6% of the 
frequencies  
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Figure 5. (Color online) Fundamental frequency of the ! = 2 torsional oscillations, 0t2, as function of the stellar mass, M/M!, for
R = 10 km (left panel), R = 12 km (middle panel), and R = 14 km (right panel). In each panel, the solid lines correspond to the results
without the electron screening effect, while the broken lines to those with such an effect. The lines with circle are the frequencies with
DH2001, while those with square are with KP2013.
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Figure 6. (Color online) With the electron screening effect, the expected fundamental frequencies of the ! = 2 torsional oscillations are
shown as a function of the stellar models, where the region between two solid lines corresponds to the expected frequencies for the stellar
model with R = 10− 14 km using KP2013, while the region between two broken lines corresponds to those using DH2001. In this figure,
one of the QPO frequencies observed in SGR 1806-20, i.e., 26 Hz, is also shown for the comparison.

To determine the frequencies of torsional oscillations, one should impose the appropriate boundary conditions, i.e., the

zero-torque condition at the stellar surface (r = R) and the zero-traction condition at the basis of crust (r = R − ∆R),

because the exterior region of the neutron star is vacuum and the shear modulus in the core region is zero. In practice, since

the both condition can be reduced to Y ′ = 0 (Schumaker & Thorne 1983; Sotani, Kokkotas & Stergioulas 2007), we impose

such conditions at r = R and R − ∆R. At last, the problem to solve becomes the eigenvalue problem.

In figure 5, we show the fundamental frequencies of the ! = 2 torsional oscillations as a function of the stellar mass with

the fixed stellar radius, i.e., R = 10 km in the left panel, R = 12 km in the middle panel, and R = 14 km in the right panel. In

this figure, the solid and broken lines denote the results without and with the effect of electron screening, while the lines with

square and circle denote the results with KP2013 and DH2001, respectively. Comparing the solid lines to the broken lines,

one can see that the frequencies can reduce 6% due to the electron screening effect, which is independent of the adopted crust

EOSs and the stellar models. Considering that the lower QPO frequencies observed in SGRs are tens of hertz, this difference

due to the electron screening effect is important to determine the stellar model and/or to obtain the interior information

via the QPO frequencies. Additionally, comparing the lines with square to those with circle in this figure, one can observe

that the frequencies calculated with DH2001 (lines with circle) become smaller than those with KP2013 (lines with square),

where the deviation is around 7% independent of the stellar models, in spite of the fact that the crust configuration with

DH2001 is almost same as that with KP2013 as shown in figure 2. Since this difference in frequencies comes from the different

treatment of neutron skin for preparing each EOS, one might be possible to get the information about neutron skin via the

QPO frequencies from SGRs. In practice, the expected fundamental frequencies of the ! = 2 torsional oscillations with the

electron screening effect for the stellar models with R = 10−14 km can be shown as in figure 6, where the region between two

solid lines (shaded with horizontal lines) corresponds to the expected frequencies with KP2013, while the region between two

broken lines (shaded with vatical lines) corresponds to those with DH2001. That is, with the help of the other observations

of stellar mass and/or radius for central object in SGR, one could be possible to verify the difference of the EOS in the crust

region via the QPO frequencies observed in SGRs.

In figures 7 and 8, we show the fundamental frequencies of the ! = 3 and 4 torsional oscillations as a function of the stellar

mass with the fixed stellar radius, in the same manner as figure 5. From these figures, we can see that the frequencies even for
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constraint on L 
•  due to the electron screening effect, constraint of L shifts 

~14% smaller value  
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modified constraints on L 
•  adopting the reduction of frequencies due to the electron 

screening effect, constraints on L become as follows; 
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Newton+ 12 

50 ≲ L ≲ 73 MeV  

87 ≲ L ≲ 113 MeV  



missing effects ?? 
•  modification of shear modulus 

–  size of nuclei 
–  electron screening (Horowitz & Hughto 08; Kobyakov & Pethick 13; 

Sotani 13) 
–  existence of pasta phase (Sotani 11; Gearheart+11; Newton+13) 

•  paring effect and shell effect (Deibel+13) 
•  superfluidity (Chamel 12, 13; Sotani+12; Deibel+13) 
•  magnetic field (Sotani+; Colaiuda & Kokkotas; Gabler+; Passamonti+; 

Lander+; Deibel+13) 

•  emission mechanism  
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blue : decrease 
red : increase 



conclusion 
•  asteroseismology could be powerful approach to see the 

interior properties of neutron stars.  
–  QPOs in SGRs may be good examples to adopt the asteroseismology  

•  compering the torsional oscillations to the observational 
evidences, we can get the constraint on L as L ≳ 50 MeV. 

•  superfluid effect enhances the frequencies of torsional 
oscillations. 
–  100 ≲ L ≲ 130 MeV, if all QPOs come from torsional oscillations 
–  58 ≲ L ≲ 85 MeV, if QPOs except for 26 Hz QPO coms from 

torsional oscillations 
•  frequencies are reduced ~6% due to the electron screening 

effect, which seems to be independent of the crust EOS 
–  constraint of L shifts ~14% smaller value 
–  87 ≲ L ≲ 113 MeV or 50 ≲ L ≲ 73 MeV 

•  we should take into account additional effects. 
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