

Agenda:

- Importance of the Nuclear Symmetry Energy in nuclear and astrophysics and its uncertainty
- Density and momentum dependence of the symmetry potential
- here: early emission of nucleons and light fragments as a probe for $\rho \leq \rho_0$
- Possibility to disentangle density and momentum dependence of the symmetry energy

The Nuclear Symmetry Energy in different "realistic" models

Example of the isovector dependence for a particular parametrization (used in the following results, BGBD, Bombaci-Gale-Bertsch-DasGupta)

Symmetry energy and symmetry potentials (effective masses)

B.A. Li, X. Han, arXiv:1304.3368

establish a relation $\{E_{sym}, L\} \leftarrow \rightarrow \{U_{sym}, m_{n,p}^*\}$ using the Hugenholtz-Van Hove theorem

Use existing determinations in the literature for $\{E_{sym},L\}$ to obtain values for $\{U_{sym},m_{n,p}^*\}$

Without going into details, shows appearance of some consensus on the symmetry potential and the effective mass, but also the large scatter (esp. for the effective mass splitting)

→ need to constrain this better

Pre-equilibrium particle emission: n/p ratio

 \rightarrow A sensitive observable, but perhaps double ratio not optimal. Light charged particles?

symmetric collisions, 35 AMeV

Study of Light Fragment Emission: ^{136,124}Xe+^{124,112}Sn, E = 32,.,150 AMeV, Prelim. data from R. Bougault, et al.,GANIL

Cluster recognition by two methods: Coalescence (CO) in phase space Density cut (DC, "gas" (p.n) and "liquid") Global charge distributions agree resonably

¹³⁶Xe + ¹²⁴Sn, b = 2 fm ZD/MD Multiplicity dM/dZ 10 32 A MeV 39 A MeV 45 A MeV CO, son 50 A MeV 1 10 10 10-2 10 10⁻³ 10 10-4 10 10ō 10 20 30 40 50 60 20 30 10 40 50 60 0 Fragment charge Z S. Hudan, et al., PRC67, 064613 Z son **Calculations with variation** stn m_n*>m_p* asy-soft n SO of symmetry energy asy-stiff $m_n^* > m_n^*$ р sop st and effective mass splitting stp

Study of Light Fragment Emission: ^{136,124}Xe+^{124,112}Sn, E = 32,.,150 AMeV, Yields and spectra in comp. to experiment

Study of Light Fragment Emission: $^{136,124}Xe + ^{124,112}Sn$, E = 32,.,150 AMeV,

Study of Light Fragment Emission: ^{136,124}Xe+^{124,112}Sn, E = 32,.,150 AMeV ,

Comparison to data^{136,124}Xe+^{124,112}Sn, E = 32,...,150 AMeV data R. Bougault, A. Chbihi (Ganil, prelim, IWM11)

Similar work at MSU: W.Lynch, INPC, Florence, 2013: ^{124,112}Sn+^{124,112}Sn, 50 AMeV Calculations using P. Danielewicz code with clusters

- Illustrate with Danielewicz BUU with cluster production.
- Approx. QM description of cluster production up to A=3 (but not beyond)
- $m^*=0.7m_0, m^*_p=m^*_n$
- Calculations underpredict the doubleratio

Figure courtesy of Z. Chajecki.

•Alpha production not included in the model => alphas end up being t or ³He

1CL

•<u>Check</u>: combine experimental alpha spectra with tritons and helium-3 and compare to the model predictions.

•Need to extend cluster production past A=4.

Conclusions:

- The nuclear symmetry potential is density and momentum dependent; both behaviors are not well known from nuclear matter theories
- both are important for isospin sensitive observables in HIC; one should study many observables simultaneously to constrain the symmetry energy
- the ratios of p/n and light fragment spectra are promising to disentangle the density and momentum behaviour. new observable: moments of ratios?
- more experimental data desirable (FRIB!)
- but also improved treatment of cluster production in transport calc.

Thank you

backup

Effective masses:

k-dependence

<

>

>

Effective mass splitting

BHF:

RMF (ρ + δ)

DBHF (fit S)

DBHF (project)

$$m^*_{NR,n} \Leftrightarrow m^*_{NR,p}$$
 $m^*_{D,n} \Leftrightarrow m^*_{D,p}$

<

>

<

Dirac mass
$$m_D^* = m + \Sigma_s$$

Includes part of the interaction;
relativistically $U_{sp} \approx \frac{m_D^*}{E^*}\Sigma_s + \Sigma_0$

Baran, PhysRep 410

Sammarucca, PRC67

v. Dalen, Fuchs, PRL95

No agreement on
ordering of n/p
effective masses!

Example of the isovector dependence for a particular partametrization (used in the following results, BGBD, Bombaci-Gale-Bertsch-DasGupta)

Symmetry energy

Neutron/proton potentials as fct as fct of density for $p=p_F$ (left) and of momentum for $\rho=\rho_0$ (right)

Study of Light Fragment Emission: ^{136,124}Xe+^{124,112}Sn, E = 32,.,150 AMeV, Spectra and multiplicities

Steeper with increasing incident energy effect of AsyEoS amd m_{eff} seen

BE effects seen in particle yields Coalescence (CO) has too many free nucleons

Study of Light Fragment Emission: ^{136,124}Xe+^{124,112}Sn, E = 32,.,150 AMeV, Proton flows

Differential flow

G.C, Yong, et al., PRC80, 044608 (2009)

¹³²Sn+¹²⁴Sn, 400 AMeV