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 We are interested in determining the origin of 
the linear symmetry energy term. 

 The strong interaction creates a contribution 
to the binding energy which is of the form: 

   𝐸𝑠=c|𝑇𝑍| |𝑇𝑍 +𝑋 + 𝐸𝑠ℎ𝑒𝑙𝑙, where 𝑇𝑍 =
𝑁−𝑍

2
.  

 Approximate techniques (RPA, BCS, etc.) have 
critical behavior (∆(𝐺) = 0) in which the pairing 
correlations are not well defined. 

 We have chosen to solve this problem exactly 
by diagonalization of the pairing Hamiltonian. 

 Only a few levels (6 or 7) nearest the Fermi 
surface are included. 
 



 Experimental 
evidence of a 
linear term 
symmetry 
energy term 
exists for 
28 ≤ 𝐴 ≤ 100. 

 More N=Z 
measurements 
are needed. 

 There are 3 
doubly magic 
nuclei which 
exhibit unique 
behavior. 

𝐸𝑠=c|𝑇𝑍| |𝑇𝑍 +𝑋 + 𝐸𝑠ℎ𝑒𝑙𝑙 



 Estimate the Coulomb energy using mirror nuclei. 

 Remove Coulomb contribution. 

 Use differences in the symmetry energy to find X. 

 

𝐸𝑠 𝑍 + 1, 𝐴 − 𝐸𝑆 𝑍 − 1, 𝐴
= 𝐵𝐸 𝑍 + 1, 𝐴 − 𝐵𝐸 𝑍 − 1, 𝐴

− 2 1.412 ±0.014 𝑍𝐴−
1
3

− 0.610 ±0.048 𝑍𝐴−1

− 0.719 ±0.007 𝑍
1
3𝐴−

1
3  [𝑀𝑒𝑉] 𝜕𝐸𝑆

𝜕𝑇𝑍
 |𝑇𝑍=𝑇 𝑍 =

∆𝐸𝑆
∆𝑇𝑍

 |𝑇𝑍=𝑇 𝑍  

   = 2𝑐(|𝑇 𝑍| + 𝑋/2) +𝐸′
𝑠ℎ𝑒𝑙𝑙

 

𝐸𝑠=c|𝑇𝑍| |𝑇𝑍 +𝑋 + 𝐸𝑠ℎ𝑒𝑙𝑙 

The x intercept is ≈ −1, 
so 𝑋 ≈ 2  at 𝐴 = 42. 



 This investigation was 
inspired by the work of 
Jänecke et al. who observed 
a shift in the linear term 
from 𝑋 ≈ 1 to 𝑋 ≈ 4. 

 Using the 2003 Atomic Mass 
Evaluation (AME), we have 
observed roughly the same 
transition. 
◦ Different Coulomb fits are used 

and some new measurements 
are included. 

◦ At 𝐴 = [94,96], 𝑋 ≈ 1 is new. 

 The AME 2012, contains 
many important changes: 
◦ new masses at 86𝑀𝑜 and 90𝑅𝑢, 
◦ cause new extrapolations in the 

80 ≤ 𝐴 ≤ 90 region for 82𝑍𝑟, 
84𝑀𝑜, 88𝑅𝑢, and 92𝑃𝑑. 



 The Hamiltonian used in this evaluation is of the form: 

      𝐻 =  𝜖𝑘 𝑁 𝑘 − 𝐺𝑉  𝑃 †𝑘 𝑝𝑝 𝑃 𝑘′ 𝑝𝑝 + 𝑃 †𝑘 𝑝𝑛 𝑃 𝑘′ 𝑝𝑛 + 𝑃 †𝑘 𝑛𝑛 𝑃 𝑘′ 𝑛𝑛  

          −𝐺𝑠  𝑆 †𝑘 𝑝𝑛 𝑆 𝑘′ 𝑝𝑛 + C𝑇 ∙ 𝑇 

 The first term is the sum over occupied levels. 

 The second term is the monopole isovector interaction. 

 The monopole isoscalar interaction term contains only anti-aligned 
spin pairs. 

 The spin aligned pairs carry angular momentum and should be 
largely decoupled from the ground state. 

 The final term accounts for the isospin dependence of the single 
particle levels.  

 Neergård has determined that this gives a contribution of the form 
𝐶𝑇(𝑇 + 1), resulting from a collective rotation in isospace. 



 In the no pairing limit, the 
level distribution alone 
determines 𝑋. 

 This is because as 𝑇𝑍 
increases a pair of protons is 
removed and a pair of 
neutrons is added. 

 The values of 𝑋 ranges from 
large positive values to small 
negative values. 

 If the levels are completely 
degenerate, then 𝐸𝑆 is a 
constant, and 𝑋 is ill-defined 
because the slope is zero. 

𝑇𝑍 = 0    𝑇𝑍 = 2    𝑇𝑍 = 4   
 
 



 This explains the 
observed up-down 
feature seen near 
doubly magic 

nuclei ( 𝐶𝑎40 , 𝑁𝑖56  

and 𝑆𝑛100 ). 

 More realistic levels 
might not be static. 

 We will need to 
know the 
equilibrium 
deformations, and 
then generate the 
corresponding 
levels. 



 A mixed micro-macro method can be 
used to determine the equilibrium 
deformations. 
◦ This involves a deformed liquid droplet.  
◦ Strutinski renormalization is used to 

combine the microscopic contributions with 
the macroscopic ones. 

◦ BCS pairing is used and best fits ∆𝑛 and ∆𝑝 
are used given by Möller and Nix. 

 The deformation parameters (𝜀2, 𝜀4, 𝛾) 
determine the potential energy surface. 

 The equilibrium deformation 
corresponds to the minimum. 

 The resulting deformations are 
comparable to the state of the art (e.g. 
FRDM, HFB-21). 

 The levels used in the pairing 
calculations correspond to the average 
of the proton and neutron Nilsson 
levels nearest the 𝑁 = 𝑍 Fermi surface. 



Even-even, odd-odd T=0 pairing gap at N=Z: 

2∆ 𝑁, 𝑍 =
1

2
𝐵𝐸 𝑁 − 1, 𝑍 − 1 − 2𝐵𝐸 𝑁, 𝑍 + 𝐵𝐸 𝑁 + 1, 𝑍 + 1  

𝐺𝑉 𝐴 = 13.9 𝐴−3/4 [𝑀𝑒𝑉] 𝐶 𝐴 = 58.9 𝐴−1 [𝑀𝑒𝑉] 

Low lying isospin of odd-odd N=Z nuclei. 



 The values of the Wigner 
X are in good agreement 
with what is observed 
experimentally. 

 All of the up-down 
features coming from 
changes in level density 
are reproduced, but 
some not always to the 
exact value. 

 Discrepancies are likely 
the result from the 
using model 
deformations. 



 The isomoment of 
inertia, does not come 
out well. 

 This is a result of 
performing the 
calculations with so 
few levels. 

 The pairing 
correlations at high 𝑇𝑍 
have been artificially 
diminished. 

𝑇𝑍 #Even #Odd 

0,1 3647 3647 

2,3 1001 1890 

4,5 70 210 



 The isoscalar interaction 
can also be varied. 

 These are the results for 
six evenly spaced levels 
and with 𝐶 = 1 𝑀𝑒𝑉. 

 Fitting the pairing gap 
and the low lying isospin 
severely limits the phase 
space. 

 The ground state isospin 
further limits the range. 

 The results in the 
allowed region are very 
similar. 



 With the isoscalar 
interactions included, only 
six level calculations can be 
used. 

 Fixed ratios of 
𝐺𝑆

𝐺𝑉
 will allow 

for the same two variables, 
𝐺𝑉(𝐴) and 𝐶(𝐴), to be fit. 
◦ Again, 2∆ is used to fit 𝐺𝑉 𝐴 , 

◦ And the low lying isospin with the 
fit 𝐺𝑉 𝐴  is used to find 𝐶 𝐴 .  

 Note that only even 𝑇𝑍 chains 

are included for 𝑋 and 1
𝜃
.  

 The resulting X is the same! 



 The Random Phase Approximation contains critical phemenona. 
 The resulting X suffers as a result. 
 Neergård, has created a technique that interpolates over the 

critical region. 
◦ This calculation is in good agreement with the exact calculation. 
◦ And it is capable of involving many levels.  

 Calculations involving this technique and 50 level calculations 
are underway. 



 In order to verify the 𝐴 = 80 results are 
fluctuations around 𝑋 = 1, not 𝑋 = 4, 
measurements of 𝑁 ≈ 𝑍 nuclei would be helpful. 

 Specifically, high precision measurements of 
80𝑍𝑟, 82𝑍𝑟, 84𝑀𝑜, 88𝑅𝑢, and 92𝑃𝑑 are needed. 

 The trend above 𝐴 = 100, is not known so low 
𝑇𝑍 ≈ 0 nuclei would be interesting. 

 As would high 𝑇𝑍 ≈ 5, below 𝐴 = 24. 
 It would also be interesting to do a study of the 

mirror nuclei up to 𝑇𝑍 ≈ −4, currently 𝑀𝑔19  has 
the lowest value in the AME 2012 measurements 
at 𝑇𝑍 ≈ −2.5.  



 The observed fluctuations in the linear 
symmetry energy term are related to the level 
distribution near the Fermi surface. 

 The Wigner X can be calculated using Nilsson 
levels and a simple pairing Hamiltonian. 

 Boundary issues are particularly important for 
the isomoment of inertia. 

 The four observables of interest are relatively 
insensitive to the pairing correlations caused by 
the simple spin zero isoscalar term. 

 𝐺𝑆 ≤ 𝐺𝑉 is constrained by fitting the pairing gap. 

 





 Even-even and odd-odd mass parabola separation can 
be measured for neighboring nuclei. 

 Mirror nuclei have constant A, |TZ|, and are both even-
even or odd-odd. 

 An isobaric chain of even-even nuclei provides insight 
to the structure of the symmetry term, with the 
Coulomb energy removed. 

 Shell effects are not removed in any of these… 

 





 The key to isospin conservation is to always 
use the same levels. 

 Effort was made to not move the window. 



 𝑇𝑧 
= [1,3,5] for a 

seven level 
calculation. 

 These are organized 
so that at there will 
be at least one pair 
and one hole one 
each level. 

 Each of these also 
include addition of 
𝐶𝑇(𝑇 + 1) term. 
 



 𝑇𝑧 
= [0,2,4] for a seven 

level calculation. 
 It was arbitrarily chosen 

to use 3 occupied and 4 
unoccupied levels at 
𝑁 = 𝑍. 

 The other choice gives 
comparable results 
depending on the 
spacing of those top and 
bottommost levels.  

 Each of these also 
include addition of 
𝐶𝑇(𝑇 + 1) term. 



 The isospin inversion 
involves a blocked level. 

 Blocking will remove a 
level and a 6 level 
calculation is performed. 

 The blocked pair is added 
back in. 

 The unblocked calculation 
involves the addition of 
the 𝐶𝑇(𝑇 + 1) term. 



 The N=Z 
configurations for a 
seven level calculation. 

 These are centered 
about the OO nucleus. 

 Again, blocking is 
used. 

 Only the T=0 states 
are compared, so this 
does not depend on C.  

 



rotation in ordinary space

rotational energy: 

E(I) =< H > +
I(I +1)
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Limit of strong symmetry breaking: Wigner X=1  

(“large deformation” in isovector space) 

The experimental X often close to 1, but not as close as for 

ordinary rotation.                   Weak deformation. 


