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 We are interested in determining the origin of 
the linear symmetry energy term. 

 The strong interaction creates a contribution 
to the binding energy which is of the form: 

   𝐸𝑠=c|𝑇𝑍| |𝑇𝑍 +𝑋 + 𝐸𝑠ℎ𝑒𝑙𝑙, where 𝑇𝑍 =
𝑁−𝑍

2
.  

 Approximate techniques (RPA, BCS, etc.) have 
critical behavior (∆(𝐺) = 0) in which the pairing 
correlations are not well defined. 

 We have chosen to solve this problem exactly 
by diagonalization of the pairing Hamiltonian. 

 Only a few levels (6 or 7) nearest the Fermi 
surface are included. 
 



 Experimental 
evidence of a 
linear term 
symmetry 
energy term 
exists for 
28 ≤ 𝐴 ≤ 100. 

 More N=Z 
measurements 
are needed. 

 There are 3 
doubly magic 
nuclei which 
exhibit unique 
behavior. 

𝐸𝑠=c|𝑇𝑍| |𝑇𝑍 +𝑋 + 𝐸𝑠ℎ𝑒𝑙𝑙 



 Estimate the Coulomb energy using mirror nuclei. 

 Remove Coulomb contribution. 

 Use differences in the symmetry energy to find X. 
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𝐸𝑠=c|𝑇𝑍| |𝑇𝑍 +𝑋 + 𝐸𝑠ℎ𝑒𝑙𝑙 

The x intercept is ≈ −1, 
so 𝑋 ≈ 2  at 𝐴 = 42. 



 This investigation was 
inspired by the work of 
Jänecke et al. who observed 
a shift in the linear term 
from 𝑋 ≈ 1 to 𝑋 ≈ 4. 

 Using the 2003 Atomic Mass 
Evaluation (AME), we have 
observed roughly the same 
transition. 
◦ Different Coulomb fits are used 

and some new measurements 
are included. 

◦ At 𝐴 = [94,96], 𝑋 ≈ 1 is new. 

 The AME 2012, contains 
many important changes: 
◦ new masses at 86𝑀𝑜 and 90𝑅𝑢, 
◦ cause new extrapolations in the 

80 ≤ 𝐴 ≤ 90 region for 82𝑍𝑟, 
84𝑀𝑜, 88𝑅𝑢, and 92𝑃𝑑. 



 The Hamiltonian used in this evaluation is of the form: 

      𝐻 =  𝜖𝑘 𝑁 𝑘 − 𝐺𝑉  𝑃 †𝑘 𝑝𝑝 𝑃 𝑘′ 𝑝𝑝 + 𝑃 †𝑘 𝑝𝑛 𝑃 𝑘′ 𝑝𝑛 + 𝑃 †𝑘 𝑛𝑛 𝑃 𝑘′ 𝑛𝑛  

          −𝐺𝑠  𝑆 †𝑘 𝑝𝑛 𝑆 𝑘′ 𝑝𝑛 + C𝑇 ∙ 𝑇 

 The first term is the sum over occupied levels. 

 The second term is the monopole isovector interaction. 

 The monopole isoscalar interaction term contains only anti-aligned 
spin pairs. 

 The spin aligned pairs carry angular momentum and should be 
largely decoupled from the ground state. 

 The final term accounts for the isospin dependence of the single 
particle levels.  

 Neergård has determined that this gives a contribution of the form 
𝐶𝑇(𝑇 + 1), resulting from a collective rotation in isospace. 



 In the no pairing limit, the 
level distribution alone 
determines 𝑋. 

 This is because as 𝑇𝑍 
increases a pair of protons is 
removed and a pair of 
neutrons is added. 

 The values of 𝑋 ranges from 
large positive values to small 
negative values. 

 If the levels are completely 
degenerate, then 𝐸𝑆 is a 
constant, and 𝑋 is ill-defined 
because the slope is zero. 

𝑇𝑍 = 0    𝑇𝑍 = 2    𝑇𝑍 = 4   
 
 



 This explains the 
observed up-down 
feature seen near 
doubly magic 

nuclei ( 𝐶𝑎40 , 𝑁𝑖56  

and 𝑆𝑛100 ). 

 More realistic levels 
might not be static. 

 We will need to 
know the 
equilibrium 
deformations, and 
then generate the 
corresponding 
levels. 



 A mixed micro-macro method can be 
used to determine the equilibrium 
deformations. 
◦ This involves a deformed liquid droplet.  
◦ Strutinski renormalization is used to 

combine the microscopic contributions with 
the macroscopic ones. 

◦ BCS pairing is used and best fits ∆𝑛 and ∆𝑝 
are used given by Möller and Nix. 

 The deformation parameters (𝜀2, 𝜀4, 𝛾) 
determine the potential energy surface. 

 The equilibrium deformation 
corresponds to the minimum. 

 The resulting deformations are 
comparable to the state of the art (e.g. 
FRDM, HFB-21). 

 The levels used in the pairing 
calculations correspond to the average 
of the proton and neutron Nilsson 
levels nearest the 𝑁 = 𝑍 Fermi surface. 



Even-even, odd-odd T=0 pairing gap at N=Z: 

2∆ 𝑁, 𝑍 =
1

2
𝐵𝐸 𝑁 − 1, 𝑍 − 1 − 2𝐵𝐸 𝑁, 𝑍 + 𝐵𝐸 𝑁 + 1, 𝑍 + 1  

𝐺𝑉 𝐴 = 13.9 𝐴−3/4 [𝑀𝑒𝑉] 𝐶 𝐴 = 58.9 𝐴−1 [𝑀𝑒𝑉] 

Low lying isospin of odd-odd N=Z nuclei. 



 The values of the Wigner 
X are in good agreement 
with what is observed 
experimentally. 

 All of the up-down 
features coming from 
changes in level density 
are reproduced, but 
some not always to the 
exact value. 

 Discrepancies are likely 
the result from the 
using model 
deformations. 



 The isomoment of 
inertia, does not come 
out well. 

 This is a result of 
performing the 
calculations with so 
few levels. 

 The pairing 
correlations at high 𝑇𝑍 
have been artificially 
diminished. 

𝑇𝑍 #Even #Odd 

0,1 3647 3647 

2,3 1001 1890 

4,5 70 210 



 The isoscalar interaction 
can also be varied. 

 These are the results for 
six evenly spaced levels 
and with 𝐶 = 1 𝑀𝑒𝑉. 

 Fitting the pairing gap 
and the low lying isospin 
severely limits the phase 
space. 

 The ground state isospin 
further limits the range. 

 The results in the 
allowed region are very 
similar. 



 With the isoscalar 
interactions included, only 
six level calculations can be 
used. 

 Fixed ratios of 
𝐺𝑆

𝐺𝑉
 will allow 

for the same two variables, 
𝐺𝑉(𝐴) and 𝐶(𝐴), to be fit. 
◦ Again, 2∆ is used to fit 𝐺𝑉 𝐴 , 

◦ And the low lying isospin with the 
fit 𝐺𝑉 𝐴  is used to find 𝐶 𝐴 .  

 Note that only even 𝑇𝑍 chains 

are included for 𝑋 and 1
𝜃
.  

 The resulting X is the same! 



 The Random Phase Approximation contains critical phemenona. 
 The resulting X suffers as a result. 
 Neergård, has created a technique that interpolates over the 

critical region. 
◦ This calculation is in good agreement with the exact calculation. 
◦ And it is capable of involving many levels.  

 Calculations involving this technique and 50 level calculations 
are underway. 



 In order to verify the 𝐴 = 80 results are 
fluctuations around 𝑋 = 1, not 𝑋 = 4, 
measurements of 𝑁 ≈ 𝑍 nuclei would be helpful. 

 Specifically, high precision measurements of 
80𝑍𝑟, 82𝑍𝑟, 84𝑀𝑜, 88𝑅𝑢, and 92𝑃𝑑 are needed. 

 The trend above 𝐴 = 100, is not known so low 
𝑇𝑍 ≈ 0 nuclei would be interesting. 

 As would high 𝑇𝑍 ≈ 5, below 𝐴 = 24. 
 It would also be interesting to do a study of the 

mirror nuclei up to 𝑇𝑍 ≈ −4, currently 𝑀𝑔19  has 
the lowest value in the AME 2012 measurements 
at 𝑇𝑍 ≈ −2.5.  



 The observed fluctuations in the linear 
symmetry energy term are related to the level 
distribution near the Fermi surface. 

 The Wigner X can be calculated using Nilsson 
levels and a simple pairing Hamiltonian. 

 Boundary issues are particularly important for 
the isomoment of inertia. 

 The four observables of interest are relatively 
insensitive to the pairing correlations caused by 
the simple spin zero isoscalar term. 

 𝐺𝑆 ≤ 𝐺𝑉 is constrained by fitting the pairing gap. 

 





 Even-even and odd-odd mass parabola separation can 
be measured for neighboring nuclei. 

 Mirror nuclei have constant A, |TZ|, and are both even-
even or odd-odd. 

 An isobaric chain of even-even nuclei provides insight 
to the structure of the symmetry term, with the 
Coulomb energy removed. 

 Shell effects are not removed in any of these… 

 





 The key to isospin conservation is to always 
use the same levels. 

 Effort was made to not move the window. 



 𝑇𝑧 
= [1,3,5] for a 

seven level 
calculation. 

 These are organized 
so that at there will 
be at least one pair 
and one hole one 
each level. 

 Each of these also 
include addition of 
𝐶𝑇(𝑇 + 1) term. 
 



 𝑇𝑧 
= [0,2,4] for a seven 

level calculation. 
 It was arbitrarily chosen 

to use 3 occupied and 4 
unoccupied levels at 
𝑁 = 𝑍. 

 The other choice gives 
comparable results 
depending on the 
spacing of those top and 
bottommost levels.  

 Each of these also 
include addition of 
𝐶𝑇(𝑇 + 1) term. 



 The isospin inversion 
involves a blocked level. 

 Blocking will remove a 
level and a 6 level 
calculation is performed. 

 The blocked pair is added 
back in. 

 The unblocked calculation 
involves the addition of 
the 𝐶𝑇(𝑇 + 1) term. 



 The N=Z 
configurations for a 
seven level calculation. 

 These are centered 
about the OO nucleus. 

 Again, blocking is 
used. 

 Only the T=0 states 
are compared, so this 
does not depend on C.  

 



rotation in ordinary space

rotational energy: 

E(I) =< H > +
I(I +1)
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Limit of strong symmetry breaking: Wigner X=1  

(“large deformation” in isovector space) 

The experimental X often close to 1, but not as close as for 

ordinary rotation.                   Weak deformation. 


