3rd International Symposium NuSym

Isospin effects in medium mass nuclear systems at 25 MeV/nucleon

Ivano Lombardo (EXOCHIM Collaboration)

Dipartimento di Fisica, Università di Napoli "Federico II" INFN – Sezione di Napoli

E-mail: <u>ivlombardo@na.infn.it</u> ilombardo@lns.infn.it

INFN –LNS and Sezione di Napoli

East Lansing, 22/07/2013

Equation of State (EoS) of asymmetric NM ε (ρ , I) \rightarrow topics in nuclear structure and dynamics \rightarrow relevant role also in astrophysics

High densities → structure and stability of Neutron Stars

J.M. Lattimer and M.Prakash, *Science* 304 (2004) 536 K.Sumiyoshi and G.Ropke, *Phys. Rev.* C 77 (2008) 055804

An interdisciplinary topic

How can we probe the (asy)- EoS?

(A)Symmetry Term of Nuclear Equation of State

Review: M. Di Toro et al, JoP G 37 (2010)

The use of nuclides in the Ca region allows to investigate *n*-rich and *p*-rich systems

Two experimental campaigns at INFN-LNS:

- 25 MeV/nucleon → *low intermediate* energy reaction mechanisms
- ⁴⁰Ca+⁴⁰Ca and ⁴⁸Ca+⁴⁸Ca \rightarrow extreme N/Z values (1.0 1.4)
- mixed systems → isospin diffusion
- ⁴⁰Ca+^{40,48}Ca and ⁴⁰Ca+⁴⁶Ti → mass asymmetry effects
- ⁴²Ca+⁵⁴Fe (preliminary) and ⁴⁸Ca+⁴⁸Ca → isospin vs mass effects

Perspectives with RIBs in the Ar region

The Chimera 4π array at LNS

A. Pagano et al, Nucl. Phys. A 734 (2004) 504

Isotopic effects on fragment emission

INFN – LNS and Sezione di Napoli

strong isotopic effects

Inclusive emission of *light fragments* at forward angles (*solid lines* θ_{med} =11.5°, *dashed lines* θ_{med} =16.5°) identifyed by means of ΔE -E: *even-odd* effects on Z and N distributions

Last steps of de-excitation chains

Central events ($m_{cp} \ge 5, 6$) with the presence of a fast quasi-projectile (v_2 or $v_3 > 0.13c$) (*massive transfer*). Mass – velocity correlations of the *biggest* emitted fragment :

INFN – LNS and Sezione di Napoli

The observed phenomenon *should not* be attributed to *mass asymmetry effects* \rightarrow ⁴⁸Ca and ⁴⁶Ti have *similar m. a.*

The N/Z degree of freedom strongly influences the *reaction mechanisms*:

- Larger N/Z → larger heavy residue emission in Incomplete Fusion events
- Lower N/Z → binary-like, fusionfission and IMF emission prevail

N/Z effects on reaction mechanism

Central collisions: competitive mechanisms

$$\Delta M_{nor} \equiv \frac{m_1 - m_2}{m_{tot}}$$

 ΔM_{nor} analysis \rightarrow disentangle the *competition* of various *mechanisms* in *central collisions*:

 \rightarrow large ΔM_{nor}

low ΔM_{nor}

Binary-like – Multi-fragm. Fusion-fission

Central collisions: competitive mechanisms

Percentage of HR events by *integrating* $\Delta M_{nor} > 0.4$

large N/Z \rightarrow enhan. of HR

symmetric system → suppr. HR

lines in inset → CoMD-II model *calculations*

G. Cardella et al, PRC 85 (2012)

Central collisions: competitive mechanisms

Relative yields of HR emission in *central collisions* by means of *two gaussian fit* of *experimental mass spectra:*

- large N excess → HRs increase
- $N \approx Z \rightarrow BL$ and IMF prevail

This effect can be attributed to the *interplay* between *Coulomb* and *Symmetry terms* \rightarrow nuclear dynamics

Best agreement \rightarrow Stiff2 option. The GEMINI stage does not change the *overall shape* of spectra \rightarrow dynamics

Talk given by *M. Papa* this morning

Central collisions: CoMD-II calculations

⁴⁰Ca + ⁴⁰Ca , ⁴⁶Ti , ⁴⁸Ca We compared experimental ΔM_{nor} distributions with CoMD-II (+GEMINI) model calculations \rightarrow we adopted various form factors of U_{sym}(ρ/ρ_0)

INFN – LNS and Sezione di Napoli

By interpolating the three original options, we find $<\gamma > \approx 1.1 \rightarrow$ *minimum deviation* between exp. and calc. ΔM_{nor}

2

 $dP/d(\Delta M_{nor})$

dP/d(ΔM_{nor}

 $dP/d(\Delta M_{nor})$

2

2

⁴⁸Ca+⁴⁸Ca experiment

Moderately Stiff form factor

Central collisions: CoMD-II calculations

⁴²Ca+⁵⁴Fe: *binary* vs HR with *mass* and *velocity* selections

MV emission \rightarrow isospin *drift* effects

N/Z of QP and MV source \rightarrow light isobars

Semi-peripheral collisions: isospin diffusion

N/Z of QP (and MV) \rightarrow ⁷Li/⁷Be

⁷Li and ⁷Be emission yields by means of multi-component *moving source* fits.

Semi-peripheral collisions: isospin diffusion

Following SM, we can assume:

$$\frac{Y_{\gamma_{Li}}}{Y_{\gamma_{Be}}} \propto \exp \frac{N}{Z} \bigg|_{source}$$

and we can estimate (*roughly*) the degree of *N/Z* equilibration

We can define the *fraction of equilibrium* as follows:

Keksis et al PRC 81 (2010)

$$f_{eq} \equiv \frac{\frac{N}{Z_{QP}} - \frac{N}{Z_{P}}}{\frac{N}{Z_{TOT}} - \frac{N}{Z_{P}}}$$

At complete charge equilibrium $\rightarrow f_{eq}=1$

The *pure systems* → useful to plot the "*equilibrium line*"

Perspectives in the low energy domain (DIC)

Competition between *reaction mechanisms* in central events (≈ 20 MeV/n)

Thank you for the attention !

INFN – LNS and Sezione di Napoli

M JINFN -LNS and Sezione di Napoli I'T

L. Acosta^a, C.Agodi^a, F.Amorini^{a,c}, A.Anzalone^a, L. Auditore^l, I.Berceanuⁱ, M.Buscemi^{a,c}, G.Cardella^b, S.Cavallaro^{a,c}, M.B.Chatterjee^d, E.De Filippo^b, G.Giuliani^c, E.Geraci^{b,c}, L.Grassi^{b,c}, J. Han^a, E.La Guidara^{b,e}, G.Lanzalone^{a,f}, I.Lombardo^m, D.Loria^l, C.Maiolino^a, A.Pagano^b, M.Papa^b, S.Pirrone^b, G.Politi^{b,c}, F.Porto^{a,c}, E. Rosato^m, F.Rizzo^{a,c}, P.Russotto^{a,c}, A.Trifirò^l, M.Trimarchi^l, G.Verde^b, M. Vigilante^m

a) INFN Laboratori Nazionali del Sud, Catania, Italy
b) INFN, Sezione di Catania, Catania, Italy
c) Dipartimento di Fisica e Astronomia Università di Catania, Catania, Italy
d) Saha Institute of Nuclear Physics, Kolkata, India
e) Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania, Italy
f) Dipartimento di Ingegneria ed Architettura, Università Kore di Enna, Enna, Italy
g) Institut de Physique Nucleaire d'Orsay, CNRS-IN2P3, Orsay Cedex, France
h) Institute of Physics, University of Silesia, Katowice, Poland
i) Institute for Physics and Nuclear Engineering, Bucharest, Romania
l) Dipartimento di Fisica, Università di Messina, Messina, Italy
m) Dipartimento di Fisica, Università di Napoli Federico II, Napoli, Italy
and INFN – Sezione di Napoli, Via Cintia, Napoli, Italy