Density Dependence of Symmetry Term from High Energy Experiments

Jerzy Łukasik

IFJ-PAN Kraków, Poland

- Symmetry energy
- Observables and sensitivity (INDRA, FOPI)
- FOPI/LAND data (1993/2011)
- ASY-EOS Experiment (2011)
- Challenges and future directions

Symmetry Energy (nucleus)

Symmetry Energy (nuclear matter)

Symmetric matter (δ =0)

Symmetry term. Why so uncertain?

Symmetry energy uncertain at high density and modified by clustering at low density

Phenomenological forces constrained around saturation and for nearly isospin-symmetric matter. Poor knowledge of effective forces in neutron-rich matter. Uncertainties in the nature of the three-neutron force. Uncertain extrapolations above the saturation density.

Why so important?

INDRA@GSI: ^{124,129}Xe + ^{112,124}Sn @ 100 AMeV slope of v1 at midrapidity

Łukasik and W. Trautmann(INDRA-ALADIN), arXiv:0708.2821[nucl-ex]

FOPI + IQMD

Au+Au @ 1 AGeV, Scaled rapidity distribution

Reliable cluster production algorithms needed

Au+Au @ 1 AGeV, v1 vs scaled rapidity

HM, SM – HARD and SOFT isoscalar EOS parametrizations with momentum dependence

Pion flows, FOPI, 1.5 AGeV

Free $\sigma_{_{np}}$ and $\sigma_{_{pp}}$ as a function of energy

 σ (mb) vs LAB kinetic energy of one particle incident on the other being at rest (MeV)

Reanalysis of FOPI/LAND Au+Au @ 400, 600, 800 AMeV [Y. Leifels et al. PRL 71 (1993) 963] -> [P. Russotto et al. PLB 697 (2011) 471]

P. Russotto et al. PLB 697 (2011) 471

Central collisions, Au+Au @ 400 AMeV

Data: W. Reisdorf, et al., NPA 612 (1997) 493

UrQMD, Q. Li, J.Phys. G 31(2005)1359

"Fermi-gas" parametrization of the symmetry term:

Reanalysis of FOPI/LAND Au+Au @ 400, 600, 800 AMeV [P. Russotto et al. PLB 697 (2011) 471]

Reanalysis of FOPI/LAND Au+Au @ 400, 600, 800 AMeV [P. Russotto et al. PLB 697 (2011) 471]

Medium correction factors to the elastic σ_{NN} [UrQMD, Q. Li et al., PRC 83(2011)044616]

Esym from FOPI + UrQMD

P. Russotto et al. PLB 697 (2011) 471

Esym from FOPI + UrQMD + Tsang(2012)

ASY-EOS experimental setup May 2011

Setup from the proposal of 2009

Active elements

Photodiodes: HAMAMATSU S5377-02

28x28 mm²

500 ± 15 µm

- Active Area:
- Thickness:
- Orientation:
- Dead Layers: 1.5 µm front, 20 µm rear

(111)

- Full Depletion: ~170 V
- Dark Current: 30 nA, (Max. 150 nA)
- Rise Time: 40 ns
- Capacitance: 200 pF

CsI(TI): IMP-CAS, Lanzhou, China

- TI concentration: 1
- LO non-uniformity:
- Shape:
- Tolerance:
- 1500 ppm <7%
- . </%
 - Truncated pyramids
 - ± 0.1 mm
- Wrapping: 3M Vikuiti[™] ESR foil
- Reflectance:
- Thickness:
- 65 µm

>98%

SCT decomposed (non-trivial) (lines from the ATIMA range-energy tables)

p10+p10/33.5:p12+p13-p10/33.5

Entries 1072173

Mass distributions Au+Au @400 AMeV

Alpha particle energy spectrum (MOD07) for Au+Au @400 AMeV (log-log scale)

Alpha particles, all modules

P. Russotto, INPC2013, Firenze, Italy 2-7.06.2013

Centrality selection and Reaction plane orientation Au+Au @ 400 AMeV

preliminary

ad. from P. Danielewicz et al., PLB 1985

J-Y Ollitrault arXiv:nucl-ex/9711003v2

Preliminary gamma extraction b< 7.5 fm

0.55

with the FOPI data of Y. Leifels and with the compilation of B. Tsang. 0.5 But... 0.4 0.35 0.45 0.5 0.4 Y_{lab}/Y_{Proj} The analysis is in progress...

Pion ratio puzzle (FOPI, Au+Au)

 π

Difficulties in measuring the $E_{sym}(\rho)$

Experiment

- Mixture of density, temperature and time dependent processes
- Detection of neutrons and protons simultaneously
- Tiny effects high precision and statistics needed
- Observables minimizing the influence of the isoscalar part
- Correlations of many observables needed to disentangle competing effects
- Exotic beams, asymmetric systems (with larger δ)

Model

- In-medium cross sections, treatment of Δ resonance dynamics (π^{-}/π^{+})
- Momentum dependence of the mean-field, effective masses
- Control the competition between the mean-field and collisions
- Realistic description of cluster formation (at least t/³He)
- Ability to describe "hot" and "cold" observables. Often "hot" model observables are compared to "cold" experimental data.

What to measure?

• High energy tails (high p_{τ} with high precision) of π^{-}/π^{+} , n/p, t/³He, ..., \rightarrow messengers of the high density first chance collisions, to resolve the influence of the competing effective mass splitting effect [Giordano et al.] and enhance sensitivity to the Esym [Q-F Li et al. JPG 32(2006) 151].

• Simultaneously π^-/π^+ , n/p, t/³He, ... to constrain the Δ properties and dynamics.

• Observables minimizing the influence of isoscalar part of the EoS and of the in-medium cross sections (ratios [Russotto et al.], double-ratios, differences [Cozma et al.] of flow observables, differential flows [B-A.Li PRL 2002)].

• Two or more beam energies to account for the competing isospin dependence of the N-N cross sections and to vary the densities. Construct excitation functions, measure e.g. the balance energy of neutrons (low energy) [Guo et al. SCP 55(2012)252]

• Observable trends as a function of centrality, rapidity and p_{τ} .

• High energies ($E_{beam} >> 100 \text{ AMeV}$), heavy systems ($A_{sys} > 100$), non-central collisions, heavy clusters [W. Reisdorf (FOPI) arXiv:1307.4210 [nucl-ex]]

The ASY-EOS Collaboration

Co-Spokespersons: R.C. Lemmon¹ and P. Russotto²

Collaboration

F. Amorini², A. Anzalone¹⁷, T. Aumann³, V. Avdeichikov¹², V. Baran²³, Z. Basrak⁴, J. Benlliure¹³, I. Berceanu¹¹, A. Bickley¹⁴, E. Bonnet⁶, K. Boretzky³, R. Bougault³⁰, J. Brzychczyk⁸, B. Bubak²², G. Cardella⁷, S. Cavallaro², J. Cederkall¹², M. Chartier⁵, M.B. Chatterjee¹⁶, A. Chbihi⁶, M. Colonna¹⁷, D. Cozma¹¹, B. Czech¹⁰, E. De Filippo⁷, K. Fissum¹², D. Di Julio¹², M. Di Toro², M. Famiano²⁷, J.D. Frankland⁶, E. Galichet¹⁸, I. Gasparic⁴, E. Geraci¹⁵, V. Giordano², P. Golubev¹², L. Grassi¹⁵, A. Grzeszczuk²², P. Guazzoni²¹, M. Heil³, J. Helgesson³¹, L. Isaksson¹², B. Jacobsson¹², A. Kelic³, M. Kis⁴, S. Kowalski²², E. La Guidara²⁰, G. Lanzalone²⁹, N. Le Neindre³⁰, Y. Leifels³, Q. Li⁹, I. Lombardo², O. Lopez³⁰, J. Lukasik¹⁰, W. Lynch¹⁴, P. Napolitani³⁰, N.G. Nicolis²⁴, A. Pagano⁷, M. Papa⁷, M. Parlog³⁰, P. Pawlowski¹⁰, M. Petrovici¹¹, S. Pirrone⁷, G. Politi¹⁵, A. Pop¹¹, F. Porto², R. Reifarth³, W. Reisdorf³, E. Rosato¹⁹, M.V. Ricciardi³, F. Rizzo², W.U. Schroder²⁸, H. Simon³, K. Siwek-Wilczynska²⁶, I. Skwira-Chalot²⁶, I. Skwirczynska¹⁰, W. Trautmann³, M.B. Tsang¹⁴, G. Verde⁷, E. Vient³⁰, M. Vigilante¹⁹, J.P. Wieleczko⁶, J. Wilczynski²⁵, P.Z. Wu⁵, L.Zetta²¹, W. Zipper²²