Symmetry Energy and Neutron Star Structure

J. M. Lattimer

Collaborators: E. Brown (MSU), K. Hebeler (OSU), D. Page (UNAM), C.J. Pethick (NORDITA), M. Prakash (Ohio U), A. Steiner (INT), A. Schwenk (TU Darmstadt), Y. Lim (Daegu Univ., Korea)

> NuSYM13 Michigan State Univ., 23 July 2013

Outline

- General Relativity Directs Neutron Star Structure
 - ► Radius Limits from the Neutron Star Maximum Mass and Causality
- ► The Neutron Star Radius and the Nuclear Symmetry Energy
 - Nuclear Experimental Constraints on the Symmetry Energy
 - Binding Energies
 - Heavy ion Collisions
 - Neutron Skin Thicknesses
 - Dipole Polarizabilities
 - Giant (and Pygmy) Dipole Resonances
 - Pure Neutron Matter
 - Astrophysical Constraints
 - Pulsar and X-ray Binary Mass Measurements
 - Photospheric Radius Expansion Bursts
 - ► Thermal Emission from Isolated and Quiescent Binary Sources
 - Other Proposed Mass and Radius Constraints
 - Pulse Modeling of X-ray Bursts and X-ray Pulsars
 - Moments of Inertia
 - Supernova Neutrinos
 - QPOs
 - Gravitational Radiation from Mergers and Rotating Stars

<=> = ∽QQ

-

Neutron Star Structure

Tolman-Oppenheimer-Volkov equations

Extremal Properties of Neutron Stars

The most compact and massive configurations occur when the low-density equation of state is "soft" and the high-density equation of state is "stiff" (Koranda, Stergioulas & Friedman 1997).

J. M. Lattimer Symmetry Energy and Neutron Star Structure

Extremal Properties of Neutron Stars

The maximum mass configuration is achieved when $x_R = 0.2404$, $w_c = 3.034$, $y_c = 2.034$, $z_R = 0.08513$.

A useful reference density is the nuclear saturation density (interior density of normal nuclei): $\rho_s = 2.7 \times 10^{14} \text{ g cm}^{-3}$, $n_s = 0.16 \text{ baryons fm}^{-3}$, $\varepsilon_s = 150 \text{ MeV fm}^{-3}$

• $M_{\rm max} = 4.1 \ (\varepsilon_s/\varepsilon_0)^{1/2} M_\odot$ (Rhoades & Ruffini 1974)

•
$$M_{B,\max} = 5.41 \ (m_B c^2/\mu_o) (\varepsilon_s/\varepsilon_0)^{1/2} M_{\odot}$$

• $R_{\rm min} = 2.82 \ GM/c^2 = 4.3 \ (M/M_{\odot}) \ {\rm km}$

•
$$\mu_{b,\max} = 2.09 \text{ GeV}$$

►
$$\varepsilon_{c,\max} = 3.034 \ \varepsilon_0 \simeq 51 \ (M_{\odot}/M_{\text{largest}})^2 \ \varepsilon_s$$

►
$$p_{c,\max} = 2.034 \ \varepsilon_0 \simeq 34 \ (M_{\odot}/M_{
m largest})^2 \ \varepsilon_s$$

•
$$n_{B,\max} \simeq 38 \ (M_\odot/M_{
m largest})^2 \ n_s$$

$$\blacktriangleright$$
 BE_{max} = 0.34 *M*

$$P_{\rm min} = 0.74 \ (M_{\odot}/M_{\rm sph})^{1/2} (R_{\rm sph}/10 \ {\rm km})^{3/2} \ {\rm ms} = 0.20 \ (M_{\rm sph,max}/M_{\odot}) \ {\rm ms}$$

Causality and the Maximum Mass

A precise radius and mass measurement sets an upper limit to the maximum mass.

A small radius measurement implies a small maximum mass.

 $1.4M_{\odot}$ stars must have $R > 8.15M_{\odot}$.

A measured R < 11km for a $1.4M_{\odot}$ star rules out a strange quark matter star, and, effectively, also a hybrid quark/hadron star.

Mass-Radius Diagram and Theoretical Constraints

J. M. Lattimer

Symmetry Energy and Neutron Star Structure

The Radius – Pressure Correlation

Neutron Star Structure

Newtonian Gravity:

J. M. Lattimer Symmetry Energy and Neutron Star Structure

Nuclear Symmetry Energy

Defined as the difference between energies of pure neutron matter (x = 0) and symmetric (x = 1/2) nuclear matter.

$$S(\rho) = E(\rho, x = 0) - E(\rho, x = 1/2)$$
Expanding around the saturation density
(ρ_s) and symmetric matter ($x = 1/2$)
 $E(\rho, x) = E(\rho, 1/2) + (1-2x)^2 S_2(\rho) + \dots$
 $S_2(\rho) = \mathbf{S_v} + \frac{\mathbf{L}}{3} \frac{\rho - \rho_s}{\rho_s} + \dots$
 $\mathbf{S_2}(\rho) = \mathbf{S_v} + \frac{\mathbf{L}}{3} \frac{\rho - \rho_s}{\rho_s} + \dots$
 $\mathbf{S_v} \simeq 31 \text{ MeV}, \quad \mathbf{L} \simeq 50 \text{ MeV}$
Connections to pure neutron matter:
 $E(\rho_s, 0) \approx S_v + E(\rho_s, 1/2) \equiv S_v - B, \qquad p(\rho_s, 0) = L\rho_s/3$
Neutron star matter (in beta equilibrium):
 $\frac{\partial(E + E_e)}{\partial x} = 0, \quad p(\rho_s, x_\beta) \simeq \frac{L\rho_s}{3} \left[1 - \left(\frac{LS_v}{\hbar c}\right)^3 \frac{4 - 3S_v/L}{3\pi^2 \rho_s} \right]$

Determining Symmetry Parameters from Nuclear Masses

From liquid drop model: $E_{\rm sym}(N,Z) = (S_{\rm v}A - S_{\rm s}A^{2/3})I^2$ $\chi^2 = \sum_i (E_{\text{ex},i} - E_{\text{sym},i})^2 / \mathcal{N} \sigma_D^2$ $\chi_{vv} = \frac{2}{N\sigma_z^2} \sum_i I_i^4 A_i^2$ $\chi_{ss} = \frac{2}{N\sigma_2^2} \sum_i I_i^4 A_i^{4/3}$ $\chi_{vs} = \frac{2}{N\sigma_n^2} \sum_i I_i^4 A_i^{5/3}$ $\sigma_{S_v} = \sqrt{\frac{2\chi_{ss}}{\chi_{vv}\chi_{ss} - \chi_{sv}^2}} \simeq 2.3 \,\sigma_D$ $\sigma_{S_s} = \sqrt{\frac{2\chi_{W}}{\chi_{W}\chi_{ss} - \chi_{sy}^2}} \simeq 13.2 \,\sigma_D$ $\alpha = \frac{1}{2} \tan^{-1} \frac{2\chi_{vs}}{\chi_{vv} - \chi_{ss}} \simeq 9^{\circ}.8$ $r_{vs} = -\frac{\chi_{vs}}{\sqrt{\chi_{vv} - \chi_{ss}}} \simeq 0.997$

Liquid droplet model:

$$E_{\rm sym}(N,Z) = \frac{S_v A I^2}{1 + (S_s/S_v) A^{-1/3}}$$

Neutron Skin Thickness

Heavy Ion Collisions

Giant Dipole Resonances

J. M. Lattimer

Dipole Polarizability

The linear response, or dynamic polarizability, of a nuclear system excited from its ground state to 100 an excited state, due to an external oscillating dipolar field.

 α_D and $R_n - R_p$ in ²⁰⁸Pb are 98% correlated Reinhard & Nazawericz (2010)

Data from Tamii et al. (2011)

Theoretical Neutron Matter Calculations

Gandolfi, Carlson & Reddy (2011); Hebeler & Schwenk (2011) 100 Sn neutron skjr H&S: Chiral Lagrangian 80 GC&R: Quantum Monte Carlo 60,<mark>5</mark> L (MeV) 40 CUK 20 0 -20 24 26 28 30 32 36 34 S. (MeV J. M. Lattimer Symmetry Energy and Neutron Star Structure

Binary Mass Measurements

Mass function $f(M_1) = \frac{P(v_2 \sin i)^3}{2\pi G}$ $= \frac{(M_1 \sin i)^3}{(M_1 + M_2)^2}$ $< M_1$

$$f(M_2) = \frac{P(v_1 \sin i)^3}{2\pi G} \\ = \frac{(M_2 \sin i)^3}{(M_1 + M_2)^2} \\ < M_2$$

In an X-ray binary, $v_{optical}$ has the largest uncertainties. In some cases sin $i \sim 1$ if eclipses are observed. If no eclipses observed, limits to i can be made based on the estimated radius of the optical star.

Pulsar Mass Measurements

Mass functions for pulsars are precisely measured. In some cases, the rate of periastron

advance and the Einstein gravitational redshift/time dilation term are known:

$$\dot{\omega} = \frac{3}{1 - e^2} \left(\frac{2\pi}{P}\right)^{5/3} \left(\frac{GM}{c^2}\right)^{2/3}$$
$$\gamma = \left(\frac{P}{2\pi}\right)^{1/3} eM_2 (2M_2 + M_1) \left(\frac{G}{M^2 c^2}\right)^{2/3}$$

Gravitational radiation leads to orbit decay:

$$\dot{P} = -\frac{192\pi}{5c^5} \left(\frac{2\pi G}{P}\right)^{5/3} (1 - e^2)^{-7/2} \left(1 + \frac{73}{24}e^2 + \frac{37}{96}e^4\right) \frac{M_1 M_2}{M^{1/2}}$$

In some cases, can also constrain Shapiro time delay, $r(M_2, e, \sin i)$ is magnitude and $s = \sin i$ is shape parameter.

Simultaneous Mass/Radius Measurements

► The measurement of flux $(F_{\infty} = \frac{R_{\infty}}{D}\sigma T_{\text{eff}}^4)$ and temperature $(T_c \propto \lambda_{\text{max}}^{-1})$ yields an apparent angular size (pseudo-BB):

$$\frac{R_{\infty}}{D} = \frac{R}{D} \frac{1}{\sqrt{1 - 2GM/Rc^2}}$$

 Observational uncertainties include distance D, interstellar absorption N_H, atmospheric composition

Best chances for accurate radius measurement:

- Nearby isolated neutron stars with parallax (uncertain atmosphere)
- Quiescent low-mass X-ray binaries (QLMXBs) in globular clusters (reliable distances, low B H-atmosperes)
- Bursting sources (XRBs) with peak fluxes close to Eddington limit (where gravity balances radiation pressure)

$$F_{
m Edd} = rac{cGM}{\kappa D^2} \sqrt{1 - 2GM/Rc^2}$$

M - R PRE Burst Estimates

M - R QLMXB Estimates

Bayesian TOV Inversion

- $\varepsilon < 0.5\varepsilon_0$: Known crustal EOS
- ► 0.5ε₀ < ε < ε₁: EOS parametrized by K, K', S_ν, γ
- Polytropic EOS: ε₁ < ε < ε₂: n₁;
 ε > ε₂: n₂

- EOS parameters K, K', S_ν, γ, ε₁, n₁, ε₂, n₂ uniformly distributed
- $M_{\rm max} \ge 1.97 \ {\rm M}_{\odot}$, causality enforced
- All stars equally weighted

Astronomical Observations

Consistency with Neutron Matter and Heavy-Ion Collisions

Additional Proposed Radius and Mass Constraints

J. M. Lattimer

Pulse profiles

Hot or cold regions on rotating neutron stars alter pulse shapes: NICER and LOFT will enable timing and spectroscopy of thermal and non-thermal emissions. Light curve modeling $\rightarrow M/R$; phase-resolved spectroscopy $\rightarrow R$.

- ► Moment of inertia Spin-orbit coupling of ultrarelativistic binary pulsars (e.g., PSR 0737+3039) vary *i* and contribute to *i*: *I* ∝ *MR*².
- Supernova neutrinos Millions of neutrinos detected from a Galactic supernova will measure $BE = m_B N - M_i < E_{\nu} >, \tau_{\nu}.$
- QPOs from accreting sources ISCO and crustal oscillations

Symmetry Energy and Neutron Star Structure

Constraints from Observations of Gravitational Radiation

Mergers:

Chirp mass $\mathcal{M} = (M_1 M_2)^{3/5} M^{-1/5}$ and tidal deformability $\lambda \propto R^5$ (Love number) are potentially measurable during inspiral.

 $\bar{\lambda} \equiv \lambda M^{-5}$ is related to $\bar{I} \equiv I M^{-3}$ by an EOS-independent relation (Yagi & Yunes 2013). Both $\bar{\lambda}$ and \bar{I} are also related to M/R in a relatively EOS-independent way (Lattimer & Lim 2013).

- ▶ Neutron star neutron star: M_{crit} for prompt black hole formation, f_{peak} depends on R.
- ▶ Black hole neutron star: $f_{\text{tidal disruption}}$ depends on R, a, M_{BH} . Disc mass depends on a/M_{BH} and on $M_{\text{NS}}M_{\text{BH}}R^{-2}$.

Rotating neutron stars: r-modes

