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                                               Problem:  
 

Current models have limited predictive power – they have too many  
parameters and it is impossible to constrain them unambiguously 
 
Models are often adjusted to fit only a selected class of data well, but  
they failure elsewhere is neglected . Such models cannot be right.  
Even  “minimal” models are of a limited use in a  broader context. 
 
                    Suggested path towards a solution ? 
 
Study carefully basic assumption of these models, their region of 
applicability, and the physics that justifies them  
 
Narrowing down the number of models and their parameters,  may 
increase the predictive power of the selected ones and move forward. 
 

PHYSICS, AS WELL AS DATA, PROVIDES A GOOD 
GUIDANCE FOR SELECTING THEORIES. 
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QCD inspired (Thomas) Schematic (Guichon) 

History: 
Original:  Pierre Guichon (Saclay),  Tony Thomas (Adelaide) 1980’ 
Several variants developed in Japan, Europe, Brazil, Korea, China 
Latest:      Whittenbury et al. arXiv:1307.4166v1, July  2013 

Main idea:   
Effective model of the MEDIUM EFFECT on baryon structure and interactions 
Quark level – coupling between u and d quarks of non-overlapping baryons by 
meson exchange - significantly simplifies as compared to nucleonic level. 
 

Quark-Meson-Coupling Model 



1.   Take a baryon in medium as an MIT bag (with one qluon exchange) 
       immersed in a mean scalar field. 
 
2.   Self-consistently include the effects of local couplings of the u and d quarks 
      to a scalar-isoscalar meson (σ) mean field, generated by all the other hadrons 
      in the medium, on the internal structure of that hadron.  
 
3.  Calculate the effective mass of the baryon 
 
 
 
     where gσN are CALCULATED coupling constants and wσB  are weighting 
     factors allowing using unique σ-N coupling for other baryons. The modification 
    of the internal baryon structure is the only place the quark degrees of freedom  
    enter the model.        
4.   Construct QMC Lagrangian on a hadronic level in the same way as in RMF 
      but using the effective baryon mass M*B. and proceed to calculate standard 
      observables. 
 
5.   Technically:  Full Fock term is included (vector and tensor), and σωρπ mesons   
 
       
 
 
 

                                    WHAT WE DO: 
(For technical details see Whittenbury et al. arXiv:1307.4166v1) 

 
MB

* = MB !w"Bg"N" + d
2
!w"B g"N"( )2



Parameters (very little maneuvering space) :  
 
meson-quark coupling constants: 

while the vector meson mean fields simply scale with either the total or isovector baryonic

density

ω̄ =

�

B

gωB
m2

ω

ρB , (20)

ρ̄ =

�

B

gρB
m2

ρB

I3BρB . (21)

For �F , shown in Eq. (16), the integrand has the form

Ξm
BB� =

1

2

�

s,s�

|ūB�(p�, s�)ΓmBuB(p, s)|2∆m(k) , (22)

where ∆m(k) is the Yukawa propagator for meson m with momentum k = p − p�
, and uB

are the baryon spinors. The integrands are presented in the Appendix.

The expression for total energy density is therefore dependent on just the three main

adjustable coupling constants, which control the coupling of the mesons to the two lightest

quarks, gqσ, g
q
ω, and gqρ for q = u, d (gsα = 0 for all mesons α). In addition, one has the

meson masses, the value of the cut-off parameter Λ appearing in the dipole form factors

needed to evaluate the Fock terms and finally the radius of the free nucleon. The σ, ω, and

ρ couplings to the quarks are constrained to reproduce the standard empirical properties

of symmetric (N=Z) nuclear matter; the saturation density ρ0 = 0.16 fm
−3
, the binding

energy per nucleon at saturation of E(ρ = ρ0) = −15.86 MeV as well as the asymmetry

energy coefficient aasym ≡ S0 ≡ S(ρ0) = 32.5 MeV [19] (see also Secs. III C).

The ω, ρ and π meson masses are set to their experimental values. The ambiguity in

defining the mass of the σ after quantising the classical equations of motion was explained in

detail in Ref. [12]. Here it is set to the value that gave the best agreement with experiment

for the binding energies of finite nuclei in a previous QMC model calculation [17], which

was 700 MeV. This is a common value taken for the sigma meson mass which is generally

considered in RMF models to be in the range 400–800 MeV.

The form factor cut-off mass, Λ, controls the strength of the Fock terms Eq. (10 - 12).

We considered a range of values; 0.9 GeV ≤ Λ ≤ 1.3 GeV, with the prefered value, as we

shall see, being 0.9 GeV. For simplicity we have used the same cutoff for all mesons. Since

the pion mass is much lower than that of the other mesons, we have confirmed that using a

lower cutoff for the pion does not significantly influence the results. This is not surprising

as Fock terms are expected to be more significant at higher density where we have found

that the pion does not contribute greatly.

9

Fixed to saturation density 0.16 fm-3, binding energy of SNM  -16 MeV 
and the symmetry energy 32.5 MeV 
 
Meson masses: ω, ρ, π  keep their  physical values 
                        σ  = 700 MeV 
 
Cut-off parameter Λ  ( in form-factors in the exchange terms) 
                             constrained between 0.9 and 1.3 GeV 
 
Free nucleon radius:  1 fm  (limited sensitivity within change +/- 20%) 
 
All other parameters either calculated or fixed by symmetry. 



WHAT WE GET:	
  

1.	
  Model formulated on quark level which can tackle fundamental issues 
   of  nuclear structure within QCD that cannot be addressed by low-energy 
   nuclear theory alone. 
 
2. Scalar polarizability of the baryon: 
	
   MB

* = MB ! g"B" + d
2
g"B"( )2

Atoms:  re-arrangement to oppose the effect of external field –   
             polarization 
 
Nucleons:  self-consistent response to the applied mean scalar field  
                  tends to oppose that applied field.  
                  Increase in the scalar field effectively decreases coupling of  
                  the σ to  an in-medium baryon  à  the baryons are source of  
                  of the scalar field  à saturation (equilibrium) will be reached.  
 
                 NATURAL EXPLANATION FOR SATURATION OF  
                 NUCLEAR MATTER 
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Can we Measure Scalar Polarizability  
in Lattice QCD ? 

18th Nishinomiya Symposium:  nucl-th/0411014 
    Prog. Theor. Phys.  

• IF we can, then in a real sense we would be linking 
   nuclear structure to QCD itself, because scalar  
   polarizability is sufficient in simplest, relativistic  
   mean field theory to produce saturation 
 
 
• Initial ideas on this published :  
  the trick is to apply a chiral invariant scalar field 
   field 

A. W. Thomas, Prog.Theor.Phys.Suppl.156:124-136,2004 



TABLE II: Additional nuclear matter properties determined for our standard case (for which

Λ = 0.9 GeV, and Rfree
N = 1.0 fm) and the effect of subsequent variations in which differences from

the standard parameter set are indicated in column 1. These properties are calculated at saturation.

The tabulated quantities at saturation are the symmetry energy S0, slope L, curvature Ksym,

incompressibility K0, skewness coefficient Q0 and volume component of isospin incompressibility

Kτ,v. (The symbol † = indicates that this parameter is a constraint on the parameters of the QMC

model.) All entries are in MeV. In the ’Increased fρN/gρN ’ scenario we arbitrarily take the ratios

of tensor to vector couplings of all baryons from the Nijmegen potentials (Table VII of Ref. [56]),

where there is a larger value of fρN/gρN = 5.7.

Model †S0 L Ksym K0 Q0 Kτ,v

Standard 32.5 101 66 298 -189 -477

Λ = 1.0 32.5 106 94 305 -141 -492

Λ = 1.1 32.5 111 128 312 -85 -509

Λ = 1.2 32.5 117 166 319 -19 -530

Λ = 1.3 32.5 124 211 329 64 -560

R = 0.8 32.5 110 120 300 -142 -485

Fock δσ̄ 32.5 109 136 285 -233 -430

Increased fρN/gρN 32.5 101 68 299 -187 -475

Dirac Only 32.5 85 2 294 -298 -424

Hartree Only 32.5 88 -17 283 -455 -404

App. Standard 32.5 93 43 298 -206 -451

App. Standard 30.0 83 34 299 -224 -402

Standard 30.0 91 58 298 -206 -426

44

Results I.  Nucleonic matter 
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The curvature of the symmetry energy S at saturation density in SNM is sometimes called the symmetry incompressibility, Ksym.
It should not be confused with Kτ , which is the isospin incompressibility, defined in Eqs. (21) and (24). Ksym is given by
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o

(
∂2S
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Finally, Qsym, the third derivative of the symmetry energy, is

Qsym = 27ρ3
o

(
∂3S
∂ρ3

)

ρ=ρo
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3 +γ
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By using the above expressions, the density dependence
of the symmetry energy can be expanded as a function of
x = (ρ − ρo)/3ρo:

S = J + Lx + 1
2Ksymx2 + 1

6Qsymx3 + O(x4). (13)

Similarly, in SNM, the density dependence of the energy per
particle, E, Eq. (1), is sometimes expressed as an expansion
in a Taylor series around ρo:

ESNM(ρ) = Eo + 1
2Kox

2 + 1
6Qox

3 + O(x4), (14)

where Eo = ESNM(ρo) is the energy per particle at the
saturation density ρo and

Ko = 9ρ2
o

(
∂2ESNM(ρ)

∂ρ2

)

ρ=ρo

(15)

and

Qo = 27ρ3
o

(
∂3ESNM(ρ)

∂ρ3

)

ρ=ρo

(16)

In ANM with asymmetry β = (N − Z)/A = (1 − 2y), the
energy per particle, E, can be expanded around a new, isospin-
dependent saturation density ρo(β) ∼ ρo[1 − 3(L/Ko)β2]
[57]:

EANM(ρ,β) = Eo(ρo(β)) + Ko(ρo(β))
2

(
ρ − ρo(β)

3ρo(β)

)2

+ Qo(ρo(β))
6

(
ρ − ρo(β)

3ρo(β)

)3

+ O(β4), (17)

where the expansion coefficients are given as

Eo(ρo(β)) = Eo + Jβ2 + O(β4), (18)

Ko(ρo(β)) = Ko +
(

Ksym − 6L − Qo

Ko
L

)
β2 + O(β4),

(19)

Qo(ρo(β)) = Qo +
(

Qsym − 9L
Qo

Ko

)
β2 + O(β4). (20)

The coefficient of the second term in Eq. (19),

Kτ,v =
(

Ksym − 6L − Qo

Ko
L

)
, (21)

determines the isospin dependence of incompressibility at
saturation density ρo(β). Strictly, it is the volume part, Kτ,v ,
of the isospin incompressibility Kτ , Eq. (24), which plays
an important role in analysis of data from giant monopole
resonances. It does not include surface effects, as discussed in
Secs. III A and III C.

III. MACROSCOPIC CONSTRAINTS

It is important to keep in mind that different Skyrme
parametrizations were often constructed with emphasis on a
certain selection of data on finite nuclei. For example, the BSk
family members were fitted to experimental nuclear masses,
SkM* to binding energies of finite nuclei and actinide fission
barriers, the SkI family to isotope shifts in the Pb region,
and the SLy family to properties of neutron matter, neutron
stars, and the ground-state variables of neutron-heavy nuclei.
Although all Skyrme forces are usually fitted to reproduce well
the saturation energy and density of symmetric nuclear matter,
they differ significantly in other characteristics of symmetric
and pure neutron matter, in particular their density dependence.

We examine in this section eleven constraints on properties
of nuclear matter, out of which four are related to SNM, two
to PNM, and five to both SNM and PNM. The constraints are
listed in Table I.

A. Symmetric nuclear matter

Infinite nuclear matter, composed of the same number of
protons and neutrons without Coulomb interaction, does not
exist in nature. Nevertheless, it has become an important the-
oretical laboratory for the investigation of physical quantities
relevant for the modeling of heavy nuclei and nuclear matter in
astrophysical compact objects. As stated above, the saturation
density ρo and the binding energy per nucleon, E0 = E/ρo,
are reasonably well established. In this work we focus on two
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Hyperons 
 
•  Derive  N,  N,     effective forces in-medium   

  with no additional free parameters 
 

• Attractive and repulsive forces (  and  mean fields)  
both decrease as # light quarks decreases 
 

• NO  hypernuclei are bound! 
 

• Pb) 
 

• Nothing known about  hypernuclei – JPARC!  

P. A. M. Guichon, A. W. Thomas and K. Tsushima, Nucl. Phys. A 814, 66 (2008). 



Λ  and Ξ hypernuclei in QMC: 
P. A. M. Guichon, A. W. Thomas and K. Tsushima, Nucl. Phys. A 814, 66 (2008). 
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- and -Hypernuclei in QMC 

Predicts  – hypernuclei bound by 10-15 MeV 
  -PARC 

Calculation without additional parameters 

Predicts Ξ bound by 10 – 15 MeV  (to be tested in JPARC)  
Increasing  split between Λ  and Ξ masses with increasing density. 
 

___________________________________________________ 
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FIG. 6: (Color online) GBEM equation of state. Kinks occur at significant hyperon threshold

densities. The divergence between the standard QMC parameterization and the ‘Hartree Only’
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Pressure as a function of energy density as predicted by QMC with hyperons 
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hyperons 



TABLE I: Coupling constants determined for the QMC model in our standard case (for which

Λ = 0.9 GeV, and Rfree
N = 1.0 fm) and variations in which differences from that standard parameter

set are indicated in column 1. Also shown are the saturation incompressibility, K0; stellar radius;

maximum stellar mass and corresponding central density (units ρ0 = 0.16 fm−3). In the ’Increased

fρN/gρN ’ scenario we arbitrarily take the ratios of tensor to vector couplings of all baryons from

the Nijmegen potentials (Table VII of Ref. [56]), where there is a larger value of fρN/gρN = 5.7.

Model gσN gωN gρ
K0 L R Mmax ρmax

c

(MeV) (MeV) (km) (M⊙) (ρ0)

Standard 10.42 11.02 4.55 298 101 12.27 1.93 5.52

Λ = 1.0 10.74 11.66 4.68 305 106 12.45 2.00 5.32

Λ = 1.1 11.10 12.33 4.84 312 111 12.64 2.07 5.12

Λ = 1.2 11.49 13.06 5.03 319 117 12.83 2.14 4.92

Λ = 1.3 11.93 13.85 5.24 329 124 13.02 2.23 4.74

R = 0.8 11.20 12.01 4.52 300 110 12.41 1.98 5.38

Fock δσ̄ 10.91 11.58 4.52 285 109 12.29 1.98 5.5

Increased fρN/gρN 10.55 11.09 3.36 299 101 12.19 1.93 5.62

Dirac Only 10.12 9.25 7.83 294 85 12.47 1.78 5.2

Hartree Only 10.25 7.95 8.40 283 88 11.85 1.54 6.0

Nucleon Only 10.42 11.02 4.55 298 101 11.64 2.26 5.82
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Figure 3. Predicted M–R relations for different EOS models and data inter-
pretations. Proceeding from back to front, the red contours and probability
distributions are for strange quark stars (EOS model E with no modifications
to the data). Next are green contours which correspond to the baseline model
(EOS model A with no modifications to the data set). The blue contours give
the results corresponding to model A with modification VIII (larger values of
fC), and the magenta results are those assuming a larger maximum mass to
accommodate a mass of 2.4 solar masses for B1957+20. Finally, the black lines
are the 10 Skyrme models from Stone et al. (2003) which are inconsistent with
the data because they imply that the radius of a 1.4 solar mass neutron star is
larger than 13 km.
(A color version of this figure is available in the online journal.)

no strong preference for either strange quark or hadronic stars;
however, model E predicts radii significantly less than 10 km
for low masses (!1.2 M!).

Our neglect of rotation is unlikely to affect our conclusions.
Rotation increases the radius at the equator and decreases
the radius at the poles, and this could be relevant for the
interpretation of some PRE X-ray bursts: the rotation rate of
4U 1608−522 is 619 Hz. However, for EOSs that are likely
to reproduce the observational data, this rotation rate increases
the radius by less than 10% (Weber 1999). This introduces
an uncertainty smaller than that due to variations in fC, which
we have already taken into account. The rotation rates for the
qLMXBs in our sample are unknown. Assuming that they are
similar to other qLMXBs, however, means that the effect of
rotation is smaller than that of their distance uncertainties.

The relationship between pressure and energy density
(Figure 2) that we determine from our baseline analysis from ob-
servations is consistent with effective field theory (Hebeler et al.
2010) and quantum Monte Carlo (Gandolfi et al. 2012; Steiner
& Gandolfi 2012) calculations of low-density neutron matter.
Note that these neutron matter results are incompatible with
the Suleimanov et al. (2010) interpretation of 4U 1724−307
(Suleimanov et al. 2011) which suggested exclusion of short
PRE bursts and qLMXBs M13 and ω Cen, also pointed out
by Hebeler et al. (2010). Our results are also consistent with
the high-density constraints on neutron matter from heavy-ion
collisions (Danielewicz et al. 2002). In order to infer the con-
straints on neutron star matter from the neutron matter con-
straints in Danielewicz et al. (2002), we performed a small phe-
nomenological correction for the small proton content using the
method in Steiner & Gandolfi (2012). Also, we should note that
the neutron matter constraints in Danielewicz et al. (2002) are
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Figure 4. Limits on the density derivative of the symmetry energy, L. The single-
hatched (red) regions show the 95% confidence limits and the double-hatched
(green) regions show the 68% confidence limits.
(A color version of this figure is available in the online journal.)

not model-independent, and depend on assumptions about the
high-density behavior of the nuclear symmetry energy.

Our results imply that over one-third of the modern Skyrme
models studied in Stone et al. (2003) are inconsistent with obser-
vations. Covariant field-theoretical models that have symmetry
energies that increase nearly linearly with density, such as the
model NL3 (Lalazissis et al. 1997), are also inconsistent with
our results, although they may still adequately describe isospin-
symmetric matter in nuclei.

Our models do not place effective constraints on the symmetry
parameter Sv , but do place significant constraints on the symme-
try energy parameter L; these are summarized in Figure 4. The
probability distribution for each model is renormalized to fix the
maximum probability at unity and is then shifted upward by an
arbitrary amount. The range that encloses all of the models and
modifications to the data is 43.3–66.5 MeV to 68% confidence
and 41.1–83.4 MeV to 95% confidence. The allowed values of
L are substantially larger for model C because this parameter-
ization more effectively decouples the low- and high-density
behaviors of the EOS.

Our preferred range for L is similar to that obtained from
other experimental and observational studies (Tamii et al. 2011;
Tsang et al. 2012; Steiner & Gandolfi 2012; Lattimer & Lim
2012) and experimental studies (e.g., Tsang et al. 2012; Tamii
et al. 2011). Our results suggest that the neutron skin thickness
of 208Pb (Typel & Brown 2000; Steiner et al. 2005) is less
than about 0.20 fm. This result is independent of the EOS
models (which include possible phase transitions) and data
modifications described above. It is compatible with experiment
(Horowitz et al. 2001) and also with measurements of the dipole
polarizability of 208Pb (Reinhard & Nazarewicz 2010).

While we have endeavored to take into account some sys-
tematic uncertainties in our analysis, we cannot rule out correc-
tions due to the small number of sources and to possible drastic
modifications of the current understanding of low-mass X-ray
binaries. Nevertheless, it is encouraging that these astrophysical
considerations agree not only with nuclear physics experiments
but also with theoretical studies of neutron matter at low densi-
ties and heavy-ion experiments at higher densities.
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95% confidence: 
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FIG. 7: (Color online) Species fraction as a function of baryon number density in GBEM, for the
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Figure 1: The composition of neutron star matter as a function of baryon density. Hyperons appear around 2n0. The
presence of the Σ hyperons depends crucially on the sign of the hyperon-nucleon potential, there are no Σ hyperons
present for a repulsive potential. Left plot: attractive Σ potential, right plot: repulsive Σ potential (see [13] for the details
of the model used).

of M < 1.4M! which is incompatible with observations. Hence, at high densities repulsive
interactions between hyperons and nucleons are important for the stability of neutron stars.

Modern many-body approaches use as input the two-body potentials as deduced from hyperon-
nucleon scattering data. For the Nijmegen soft-core hyperon nucleon potentials Vidana et al.
find that the maximum mass is only Mmax = 1.47M! which reduces to even Mmax = 1.34M!
when the hyperon-hyperon potentials are switched on [19]. Also Baldo et al. find values of
Mmax = 1.26M! even when including three-body nucleon interactions [18]. More recently
Schulze et al. [20] and Djapo et al. [26] confirm that Mmax < 1.4M! for modern microscopic (ab
initio) approaches. Hence, the neutron star equation of state gets too soft at high densities giv-
ing too low masses. Probably the underlying reason are missing three-body forces for hyperons
(YNN, YYN, YYY), which give additional repulsive contributions at high densities. If so then
it seems that neutron stars can not live without hyperon three-body forces. Certainly, here more
input is needed from hypernuclear physics by e.g. the study of light double hypernuclei in the
near future to extract the hyperonic three-body forces.

5. Maximum possible mass of neutron stars

There is another strange hadron with strong relations to the physics of the maximum possible
mass of neutron stars. Kaons produced subthreshold in heavy-ion experiments can serve as a
messenger of the high-density zone created in the collision. Kaons are produced by associated
production e.g. via NN→ NΛK, and NN→NNKK in elementary proton-proton collisions. In
the medium, i.e. in heavy-ion collisions, rescattering processes open up as πN → ΛK, πΛ →
NK from produced pions which have a lower q-value and are therefore able to pump up the
kaon production rates substantially compared to the elementary pp-collisions. At subthreshold
bombarding energies of heavy ions the matter can be compressed up to 3n0. However, kaons have
a long mean-free path, they scatter elastically with nucleons and pions, only hyperons can absorb
them as kaons carry an antistrange quark. Hence, kaons can escape from the high density zone

J. Schaffner-Bielich / Nuclear Physics A 835 (2010) 279–286282

QMC predicted composition of HD matter (Y-N potentials calculated) 

RMF with GM1 interaction 
empirical Y-N potentials fitted 
selfconsistently to data 
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Symmetry energy S (top)  
and its slope L (bottom) 
as a function of baryon 
number density 
as calculated in QMC. 
  

Effect of the Fock term: 
 
Standard: vector + tensor 
Dirac: vector 
Hartree: no Fock term 

Λ cut-off parameter of the form-factor 
     in the Fock term. 
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Pure neutron matter energy per particle as a function of density as 
obtained in QMC, in comparison with complete CEFT at N3LO order 
for more details of the latter see:  I. Tews, T. Krueger, K. Hebeler and A. 
Schwenk, Phys. Rev. Lett. 110 (2013) 032504 
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will not be conserved. The transport theory was extrapolated to cold symmetric and pure

neutron matter, with the latter augmented by empirical symmetry pressure [42]. We show

in Fig. 3 the pressure versus density for SNM and PNM, as predicted in the QMC model.

In both cases our standard QMC model is consistent with the suggested constraints but at

the upper end of the preferred range.

C. Asymmetric nuclear matter

Our knowledge of asymmetric nuclear matter is rather limited, mainly because of a still

inadequate understanding of the symmetry energy which describes the response of forces

acting in a nuclear system with an excess of protons and neutrons. This is an important

property of highly asymmetric systems, such as heavy nuclei and the nuclear matter found

in neutron stars, and is defined as

S(ρ) = 1

2

∂2E

∂β2

��
ρ,β=0

, (29)

where S(ρ) is equal to the asymmetry coefficient in the Bethe–Weisacker mass formula in

the limit A → ∞ [26].

The definition of S(ρ) in Eq. (29) is related but not identical to the commonly used

approximation as the difference between the binding energy per baryon in PNM and SNM

S(ρ) = E(ρ, β = 1)− E(ρ, β = 0) , (30)

where the binding energy per baryon is

E =
1

ρ

�
�hadronic −

�

B

MBρB

�
. (31)

This difference approximation is valid under two assumptions: (i) E(ρ, β = 0) is a minimum

energy of the matter at a given density ρ and thus in the expansion of E(ρ, β) about this

value with respect to β the leading non-zero term is the second derivative term and (ii) all

the other derivatives in the expansion are negligible [43]. In this work we consider Eq. (30)

only to examine the validity of this approximation and to observe the impact of the Fock

terms, specifically the tensor contribution, upon the symmetry energy.

The density dependence of the symmetry energy can be expanded about its value at

saturation S0 in terms of the slope L, curvature Ksym and skewness Qsym (all evaluated at
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Nonetheless, with this simple quark-based model, remarkable agreement with a broad range

of experimental data has been obtained [29].

Having established the QMC model parameters, in the following section we calculate

properties of symmetric (SNM) and pure neutron (PNM) nuclear matter as well as matter

in beta-equilibrium (BEM). The latter consists of nucleons and leptons, while matter in

generalized beta-equilibrium (GBEM) contains the full baryon octet and leptons. Using the

derived EoS, we calculate the properties of cold neutron stars and make a comparison with

up-to-date experimental and observational data. We also examine the robustness of those

results on the limited number of parameters entering the model.

B. Infinite symmetric and pure neutron nuclear matter

A minimal set of saturation properties of symmetric nuclear matter, the saturation den-

sity, the binding energy per particle and the symmetry energy at saturation, were used to

fix the quark-meson coupling constants as described in Sec. III A. None of those proper-

ties is actually an empirical quantity, since they are not measured directly but extracted

from experiments or observations in a model dependent way. However, there is a general

consensus that all meaningful theories of nuclear matter should reproduce these quantities

correctly. Moreover, other properties of both symmetric and pure neutron matter, derived

from derivatives of the energy per particle with respect to particle number density, together

with their density dependence, can be compared to empirical data to further test the theo-

ries. These include the pressure, incompressibility (compression modulus) and the slope of

the symmetry energy.

Let us define the hadronic energy per particle, E = �hadronic/ρ, where ρ is the total

baryonic density and define the following quantities as a function of ρ: The first derivative

of E provides an expression for baryonic pressure

P = ρ2
∂E

∂ρ
. (25)

The second derivative of E is the compression modulus or incompressibility

K = 9ρ2
�
∂2E

∂ρ2

�
. (26)
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• Where analytic form of (e.g. H0 + H3 ) piece of energy 
   functional derived from QMC is: 

highlights  
scalar polarizability  

      ~ 4%        ~ 1% 

Paper II: N P A772 (2006) 1 (nucl-th/0603044)  

Guichon, Matevosyan, Sandulescu, Thomas, NPA 772, 1, 2006 

Density dependent force in a non-relativistic approximation can  
be derived form QMC.  The Hamiltonian depends on QMC  
coupling constants and polarizability d but has formally similar 
structure to the Skyrme forces. 

Application to finite nuclei: 
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with the weak isospin dependence employed in the relativistic mean field models, in which the
contribution of Fock (exchange) terms is neglected [22].

Starting from the QMC energy functional one can easily derive the corresponding Hartree–
Fock (HF) equations. They have a form similar to the Skyrme–HF equations, apart from the
rearrangement term and the one-body spin–orbit interaction, which (as discussed above) have a
different density and isospin dependence. The HF equations were solved in coordinate space, fol-
lowing the method described in Ref. [12] and the Coulomb interaction was treated in a standard
way—i.e., the contribution of its exchange part was calculated in the Slater approximation. The
calculations were performed for the doubly magic nuclei 16O, 40Ca, 48Ca and 208Pb. For defi-
niteness, the σ meson mass has been set to mσ = 700 MeV, as suggested by the comparison with
the SkM∗ interaction. At this point we recall that the QMC model is essentially classical because
both the position and velocity of the bag are assumed known in the energy expression (3). The
quantization then leaves some arbitrariness in the ordering of the momentum dependent pieces
of the interaction. As pointed out in previous work [11], in the non-relativistic approximation
the difference between the orderings is equivalent to a change of about 10% in mσ . In this work
the ordering is fixed by the relativistic expression chosen for the operator K , Eq. (17). The non-
relativistic reduction then leads to an ordering which is not the same as in Ref. [11]. This is why
the σ meson mass that we use here is somewhat higher. Note that this ordering ambiguity is only
of concern in the case of finite nuclei. In uniform matter, which is the relevant approximation for
neutron stars, the problem does not exist.

The results for the binding energies and charge radii are shown in Table 3. The charge densities
are calculated with the proton form factor usually employed in the Skyrme–HF calculations [12].
From Table 3 one can see that QMC-HF gives results which are in reasonable agreement with
the experimental values. The agreement is not as good as that given by the recent Skyrme or
RMF models, but one should keep in mind that in these models the experimental values for the
binding energies and radii are included in the fitting procedure, which is not the case for the
QMC functional.

One also finds a similarly reasonable description for the spin–orbit splittings, shown in Ta-
ble 4. Since the isospin dependence in QMC-HF is stronger than in Skyrme–HF, one would

Table 3
Binding energy and radii calculated in QMC-HF, as described in the text

EB (MeV, exp) EB (MeV, QMC) rc (fm, exp) rc (fm, QMC)
16O 7.976 7.618 2.73 2.702
40Ca 8.551 8.213 3.485 3.415
48Ca 8.666 8.343 3.484 3.468
208Pb 7.867 7.515 5.5 5.42

Table 4
Comparison between the QMC and “experimental” spin–orbit splittings. Because the experimental splittings are no so
well known in the case of 48Ca and 208Pb, we give the values corresponding to the Skyrme Sly4 prediction

Neutrons (exp) Neutrons (QMC) Protons (exp) Protons (QMC)
16O, 1p1/2–1p3/2 6.10 6.01 6.3 5.9
40Ca, 1d3/2–1d5/2 6.15 6.41 6.00 6.24
48Ca, 1d3/2–1d5/2 6.05 (Sly4) 5.64 6.06 (Sly4) 5.59
208Pb, 2d3/2–2d5/2 2.15 (Sly4) 2.04 1.87 (Sly4) 1.74

Guichon,  Matevosyan, Sandulescu, Thomas, NPA 772, (2006) 
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expect different values for nuclei with large isospin asymmetry. However, as can be seen from
Table 4, the differences are rather small. This is primarily because the spin–orbit splitting de-
pends on the product of the spin–orbit form factor and the corresponding single-particle wave
functions. Thus, if the wave functions are not strongly localised in the surface region, where
Wτ (r) is effective, the influence of the isospin dependence of Wτ (r) upon the splitting need not
be so significant.

In Figs. 1, 2 we show the proton and neutron densities calculated with the QMC model and
with the Sly4 Skyrme force [19]. In the proton case we also show the experimental values [23].

Fig. 1. Proton densities of the QMC model compared with experiment and the prediction of the Skyrme Sly4 force.

Fig. 2. Neutron densities of the QMC model compared with the prediction of the Skyrme Sly4 force.

QMC proton density distribution compared with experiment and Skyrme SLy4 



                                             SUMMARY 
 
  QMC has a natural explanation for saturation of nuclear matter and 
  in-medium effects through many-body forces 
 
   It is not limited to nucleons but can be applied to hyperons 
   and CALCULATE interaction of any hadron in nuclear medium 
  with NO ADDITIONAL parameters. 
 
   Yields effective, density dependent Λ N, Σ N, Ξ N forces (not yet published) 
   with NO additional parameters － reproduces known properties of  
   hypernuclei 
 
    Can be used to derive  density-dependent effective force such as 
    the Skyrme force which performs well in finite nuclei 
    (HF+BCS QMC code for axially symmetric nuclei has been just developed 
    and  is in a testing stage (with P. - G. Reinhard) 
 
                                                  BUT 
	
  
	
  



IF QMC is as valid as we believe, it has to yield predictions 
consistent with results in other areas of nuclear physics and astrophysics 
 
FUTURE: EoS for supernova matter  (Chikako Ishizuka, Akira Ohnishi) 
                  (QMC at finite temperature) 
 
               Statistical analysis of mass and radii of NS  (Andrew Steiner) 
 
               Projected shell model  (Yang Sun) 
 
               Ab-initio calculation of light nuclei (Emiko Hiyama) 
 
               Rotating neutron stars (Fridolin Weber + collaborators) 
 

                                               +   +   + 
 
                              SUGGESTIONS WELCOME                    
 
                                 



Page 9 

nuclear  
matter 

QCD & hadron  
structure 

 , , D,  
J/     in  

nuclear matter 

quark 
matter 

n star 

Density dependent 
effective NN 
(and N , N    ) 
 forces  

Structure of  
finite nuclei &  
hypernuclei 


