Critical Behavior of Nuclear Systems from Quantum Fluctuations

## Justin Mabiala & SJY Research Group

3<sup>rd</sup> International Symposium on Nuclear Symmetry Energy July 22-26, 2013, East Lansing, Michigan



# <u>Outline</u>

## $\diamond$ Introduction

Nuclear liquid-gas phase transition

## The Experiment Event selection and Source reconstruction

Extraction of Thermodynamic Quantities

# Results and Discussion

## ♦ Summary

NuSYM13



# Nuclear liquid-gas phase transition

# Nucleon-nucleon interaction similar to van der Waals interaction

first n-n collisions "hard" interaction separation proximity evaporation

Slides from A. Olmi, INFN-Firenze

NuSYM13

J. Mabiala

Non-central collisions





## Previous Works: Indicators of phase transition

#### Caloric curve



IG. 2. Caloric curve of nuclei determined by the dependence f the isotope temperature  $T_{\text{HeLi}}$  on the excitation energy per ucleon. The lines are explained in the text.

J. Pochodzalla et al., PRL 75, 1040 (1995)



The panel on the left (right) refers to the freeze-out hypothesis I (II). The grey contour indicates the confidence region for  $C_i$  (see text).

Power law dependence



FIG. 4. Mass yield of fragments from xenon vs mass number,  $A_f$ , corrected for effects discussed in text.

M. D'Agostino *et al.*, PLB **473**, 219 (2000)

J.E. Finn et al., PRL 49, 1321 (1982)



NuSYM13

J. B. Elliot et al. , PRC 67, 024609 (2003)



Estimates are made of T- $\rho$  and P-T coexistence curves of finite neutral nuclear matter.

Current work->adding a constraint on the source asymmetry.

Extraction of thermodynamic quantities through quantum fluctuations

NuSYM13



# The Experiment

<sup>64</sup>Ni+<sup>64</sup>Ni <sup>64</sup>Zn+<sup>64</sup>Zn <sup>70</sup>Zn+<sup>70</sup>Zn @ 35 A.MeV

# NIMROD-ISiS Array

- ✓ Detection arrays arranged 14 Rings
- ✓ 3.6-167 degrees
- ✓ Full Silicon Coverage ( $4\pi$ )
- ✓ Isotopic resolution to Z=17
- $\checkmark$  Elemental resolution to  $Z_{\text{projectile}}$
- ✓ Neutron Ball ( $4\pi$ )



NuSYM13



## **Event Selection & Source Reconstruction**

#### Selection of QP source by means

- of Several cuts
- Exclude fragments that do not originate from a QP

#### $\mathbf{m}_{-} \leq v_{z} \,/\, v_{z,PLF} \leq \mathbf{m}_{+}$

 $m \pm = 1 \pm 0.65$  for Z=1,  $1 \pm 0.60$  for Z=2 and  $1 \pm 0.45$  for Z≥3

Select events with a wellmeasured QP

$$54 \le \sum_{i}^{CP} A_i + M_n \le 64$$

Select events with near-zero average momentum quadrupole

$$-0.3 \le \log Q \le 0.3$$
$$Q = \frac{\sum p_{z,i}^{2}}{\frac{1}{2} \sum p_{T,i}^{2}}$$

NuSYM13

J. Mabiala

- □ Data sorted in 4 asymmetry  $m_s=(N_s-Z_s)/A_s$  bins of the QP
- □ Excitation energy of the QP

$$E_{QP}^{*} = \sum_{i}^{M_{CP}} K_{T,i} + M_n \langle K_n \rangle - Q$$

□ Multiplicity of free neutrons

$$M_{QP} = \frac{M_{exp} - M_{bkg}}{\left(\varepsilon_{QP} + \frac{N_T}{N_P}\varepsilon_{QT}\right)\varepsilon_{lab} / \varepsilon_{sim}}$$

S. Wuenschel *et al.*, PRC **79**, 061602 (2009)
J.C. Steckmeyer *et al.*, NPA **686**, 537 (2001)
D. Lacroix *et al.*, PRC **69**, 054604 (2004)
P. Marini *et al.*, NIMA **707**, 80 (2013)



## Temperature and Density from Quantum Fluctuations

<u>Momentum quadrupole fluactuation</u> The quadrupole momentum distribution

$$Q_{xy} = p_x^2 - p_y^2$$

Contains information on the temperature through its fluctuations

$$\sigma_{xy}^{2} = \int d_{p}^{3} (p_{x}^{2} - p_{y}^{2}) f(p)$$

Assuming a Fermi-Dirac distribution

$$\sigma_{xy}^2 = (2mT)^2 F_{QC}$$

 $F_{\mbox{\tiny QC}}$  is the quantum correction factor

$$F_{\mathcal{QC}} = 0.2 \bigg( \frac{T}{\varepsilon_f} \bigg)^{-1.71} + 1$$

NuSYM13

J. Mabiala

**Multiplicity fluctuation** 

 $\diamond$  Similar derivation is given for the multiplicity fluctuation  $\sigma^2{}_N$ 

$$\frac{T}{\varepsilon_f} = -0.442 + \frac{0.442}{\left(1 - \frac{\sigma_N^2}{\overline{N}}\right)^{0.656}}$$
$$+ 0.345 \frac{\sigma_N^2}{\overline{N}} - 0.12 \left(\frac{\sigma_N^2}{\overline{N}}\right)^2$$

$$\varepsilon_f \approx 36 (\rho / \rho_0)^{2/3}$$

H. Zheng & A. Bonasera, PLB 696, 178 (2011)H. Zheng & A. Bonasera, PRC 86, 027602 (2012)



## Classical temperatures and normalized multiplicity fluctuations

 $m_s = (N_s - Z_s)/A_s$ 



 $54 \le A_{QP} \le 64$ 4 narrow asymmetry bins Proton as probe particle

Large asymmetry-> Low temperatures

Asymmetry dependence of Nuclear Caloric Curves (McIntosh's talk on Friday)

Classical case: σ²<sub>N</sub>/<N>≈1 Suppression of multiplicity Fluctuations

-> Similar to quenching in Trapped Fermi gases

T. Müller *et al.*, PRL **105**, 040401



### **Extracted Temperatures and Densities**

 $54 \le A_{QP} \le 64$ 4 narrow asymmetry bins Proton as probe particle

 $m_s = (N_s - Z_s)/A_s$ 



#### Asymmetry dependence ->less pronounced on T

Larger asymmetry ->lower density



## Liquid-gas coexistence curve



#### Finite size effects: How to scale to infinite system



$$\frac{\rho_{l,g}}{\rho_c} = 1 + b_1 \left(1 - \frac{T}{T_c}\right) \pm b_2 \left(1 - \frac{T}{T_c}\right)^{\beta}$$

J.B. Elliot et al, PRC 87, 054622 (2013)



#### NuSYM13

## Fisher's droplet model and EOS

P. Finicchiaro et *al.*, NPA 600 (1996) 236-250

M

- Pressure calculated making use of grand partition function from Fisher's droplet model
- The EOS expressed in terms of moments of fragment size distribution
- Clausius-Clapeyron equation

$$\frac{P}{P_c} = \exp\left[\Delta H / T_c (1 - T_c / T)\right]$$

#### □ Describes several fluids for T≤Tc

J.B. Elliot *et al.*, PRL **88** (042701) 2002 E.A. Guggenheim, J. Chem. Phys. 13, 253 (1945)

NuSYM13

$$P = T\rho M_0 / M_1$$

$$T_k = \sum_{A \neq A_{\text{max}}} A^k Y(A)$$



## Critical Values and Thermodynamics Quantities

| m <sub>s</sub> | T <sub>c</sub> (MeV)               | ρ <sub>c</sub> (fm <sup>-3</sup> ) | P <sub>c</sub> (MeV/fm <sup>3)</sup> | Ρ <sub>σ</sub> / ρ <sub>σ</sub> Τ <sub>σ</sub> | ∆H (MeV)     |
|----------------|------------------------------------|------------------------------------|--------------------------------------|------------------------------------------------|--------------|
| 0.065          | 12.12 ± 0.39                       | 0.070 ± 0.006                      | $0.211\pm0.001$                      | 0.25 ± 0.02                                    | 31.50 ± 1.01 |
| 0.115          | $12.51\pm0.35$                     | $0.066 \pm 0.005$                  | $0.209 \pm 0.001$                    | $0.25\pm0.02$                                  | 32.53 ± 0.90 |
| 0.165          | $\textbf{13.11} \pm \textbf{0.30}$ | $0.064 \pm 0.004$                  | $0.232\pm0.001$                      | $0.27\pm0.02$                                  | 31.46 ± 0.71 |
| 0.215          | 13.39 ± 0.21                       | $0.061 \pm 0.002$                  | $0.258\pm0.002$                      | $0.31\pm0.01$                                  | 32.13 ± 0.50 |

- $T_c$  observed to increase when increasing  $m_s$
- Critical density  $\rho_c$  decrease while pressure  $P_c$  increase with  $m_s$
- Critical compressibility factor very close to those of real gases and increase with  $m_s$ .
- ΔH values in fair agreement with the ones extracted from a recent quantum calculation (A. Carbone et al., PRC 83 (024308) 2011)

NuSYM13





□ Phase diagrams have been constructed.

□ Temperature, density, pressure as well as critical values observed to depend on source asymmetry.

Scaling of T, ρ and P to their critical values displayed universality.

 $\Box$  Critical exponent  $\beta$  and critical compressibility factor found to belong to the liquid-gas universality class.

□ Present results provide a means to establish the proton-fraction dependence of the EOS in systems with large neutron excess.

#### Work in progress:

- ♦ Use of phase space coalescence model to extract T and ρ of selected systems.
- Performing high-statistics CoMD calculations to compare with current results.
   NuSYM13 J. Mabiala Cyclotron Institute Texas A&M University

# Acknowledgments

## \*SJY Research Group

A.B. McIntosh, P. Cammarata, K. Hagel, L. Heilborn, L.W. May, A. Raphelt, G.A. Souliotis, A. Zarrella and S.J. Yennello

\* Z. Kohley, H. Zheng and A. Bonasera

\*Department of Energy grant DE-FG03-93ER-40773 and Robert A. Welch Fundation grant A-1266

# THANK YOU FOR YOUR ATTENTION !!!

# Back-up Slides

## Spinodal decomposition



Systems which enter in this region will favorably breakup into nearly equal-sized fragments

FIG. 4. Experimental higher-order charge correlations for very dissipative "binary" collisions in 32 MeV/nucleon Xe + Sn collisions (see text).

APS Meeting 2013



## A new « classical »thermometer based on proton transverse momentum fluctuations 5. Wuenschel, A. Bonasera et al., NPA 843 (2010) 1

$$Q_{xy} = P_x^2 - P_y^2$$
  
 $\sigma_{xy}^2 = \langle Q_{xy}^2 \rangle - \langle Q_{xy} \rangle^2$   
 $\sigma_{xy} = 2mT$ 

assuming a classical Maxwell-Boltzmann distribution of the momentum yields at T



Cyclotron Institute

**APS Meeting 2013** 

## Finite size effects



Near the critical point ⇒ Finite size effects exepcted very strong and scaling law might be violated

⇒β-value is that expected for a liquid-gas phase transition

APS Meeting 2013



## Phase diagrams for real gases

J. Phys. G: Nucl. Part. Phys. 38 (2011) 113101

Topical Review



Figure 2. The reduced pressure as a function of the inverse of the reduced temperature (left) and the reduced temperature as a function of reduced density (right), in the manner of Guggenhiem [23, 24]. Data for eight different fluids fall on the same curve. The data for the fluids were obtained from the NIST database [16]. The pressure-temperature curve (left) is from [24] and the temperature-density curve (right) is from [23].

APS Meeting 2013



# Experiment (PID)



**APS Meeting 2013** 



# Source Selection 1: Velocity Cut

#### □ Remove particles that do not belong (on average) to a statistically emitting QP source

=> Compare laboratory velocity of each particle to that of the heaviest charged particle measured in the event.



# Source Selection 3: Velocity Cut

# □ Sphericity cut: Select events with near-zero average momentum quadrupole.



$$Q = \frac{\sum p_{z,i}^{2}}{\frac{1}{2} \sum p_{T,i}^{2}}$$

 $-0.3 \le \log Q \le 0.3$ 

Select events with near-zero average momentum quadrupole.



APS Meeting 2013