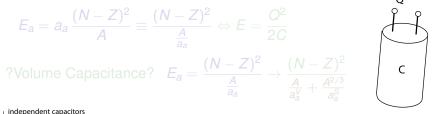
Generalities	IAS Analysis	Skyrme-Hartree-Fock	Asymmetry Skins	Conclusions
000	000000	0000000	000000	0

IAS and Skin Constraints on the Symmetry Energy

Pawel Danielewicz

Natl Superconducting Cyclotron Lab, USA

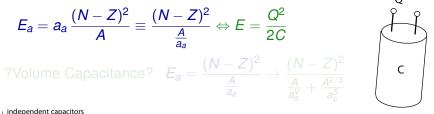

32nd International Workshop on Nuclear Symmetry Energy

July, 2013, East Lansing, Michigan

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_a \frac{(N-Z)^2}{A} + E_{mic}$$

Symmetry energy: charge $n \leftrightarrow p$ symmetry of interactions Analogy with capacitor:

Thomas-Fermi (local density) approximation:


r

ρ

Symmetry Energy

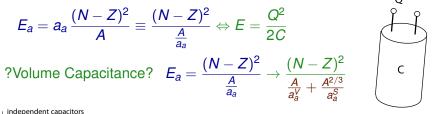
$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_a \frac{(N-Z)^2}{A} + E_{mic}$$

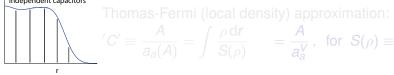
Symmetry energy: charge $n \leftrightarrow p$ symmetry of interactions Analogy with capacitor:

TF breaks in nuclear surface at $\rho < \rho_0/4$ PD&Lee NPA818(2009)36

r

•00


ρ


Symmetry Energy

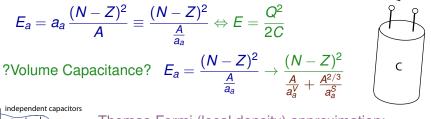
Danielewicz

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_a \frac{(N-Z)^2}{A} + E_{mic}$$

Symmetry energy: charge $n \leftrightarrow p$ symmetry of interactions Analogy with capacitor:

TF breaks in nuclear surface at $\rho < \rho_0/4$ PD&Lee NPAS18(2009)36

000

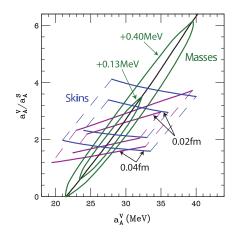

ρ

Symmetry Energy

Danielewicz

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_a \frac{(N-Z)^2}{A} + E_{mic}$$

Symmetry energy: charge $n \leftrightarrow p$ symmetry of interactions Analogy with capacitor:


Thomas-Fermi (local density) approximation: $C' \equiv \frac{A}{a_a(A)} = \int \frac{\rho \, \mathrm{d} \mathbf{r}}{S(\rho)} = \frac{A}{a_a^V}, \text{ for } S(\rho) \equiv a_a^V$ r TF breaks in nuclear surface at $\rho < \rho_0/4$ PD&Lee NPA818(2009)36

ρ

000

Generalities	IAS Analysis	Skyrme-Hartree-Fock	Asymmetry Skins	Conclusions
000	0000000	0000000	000000	0

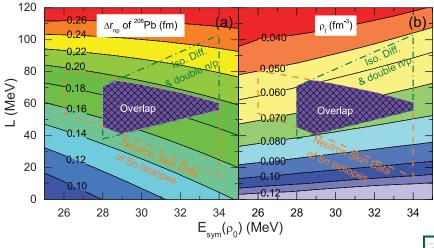
Mass and Skin Fits

Symmetry Energy:

$$E_a = rac{a_a^V}{A} \, rac{(N-Z)^2}{1 + rac{a_a^V}{a_a^S \, A^{1/3}}}$$

Skin:

$$\Delta r_{np} = \frac{2}{3} \frac{r_{rms}}{A^{1/3}} \frac{a_a}{a_a^S} \left(\frac{N-Z}{A} - Coul \right)$$


 $a_a^S \leftrightarrow L$

PD NPA723(2003)233

Danielewicz

000

Fits in $L - a_a^V$ Plane

Lie-Wen Chen et al PRC82(10)024321

Symmetry Energy

관계품

Charge Invariance

? $a_a(A)$? Conclusions on sym-energy details, following *E*-formula fits, interrelated with conclusions on other terms in the formula: asymmetry-dependent Coulomb, Wigner & pairing + asymmetry-independent, due to (N - Z)/A - A correlations along stability line [PD NPA727(03)233]!

Best would be to study the symmetry energy in isolation from the rest of *E*-formula! Absurd?!

Charge invariance to rescue: lowest nuclear states characterized by different isospin values (T, T_z) , $T_z = (Z - N)/2$. Nuclear energy scalar in isospin space

sym energy

$$a_{a} = a_{a}(A) \frac{(N-Z)^{2}}{A} = 4 a_{a}(A) \frac{T_{z}^{2}}{A}$$

 $\rightarrow E_a = 4 a_a(A) \frac{T^2}{A} = 4 a_a(A) \frac{T(T+1)}{T(T+1)}$

S NSCL

Charge Invariance

 $?a_a(A)$? Conclusions on sym-energy details, following *E*-formula fits, interrelated with conclusions on other terms in the formula: asymmetry-dependent Coulomb, Wigner & pairing + asymmetry-independent, due to (N - Z)/A - A correlations along stability line [PD NPA727(03)233]!

Best would be to study the symmetry energy in isolation from the rest of *E*-formula! Absurd?!

Charge invariance to rescue: lowest nuclear states characterized by different isospin values (T, T_z) , $T_z = (Z - N)/2$. Nuclear energy scalar in isospin space:

sym energy

$$a = a_a(A) \frac{(N-Z)^2}{A} = 4 a_a(A) \frac{T_z^2}{A}$$

$$E_a = 4 a_a(A) \frac{T^2}{A} = 4 a_a(A) \frac{T(T+1)}{A}$$

Charge Invariance

 $?a_a(A)$? Conclusions on sym-energy details, following *E*-formula fits, interrelated with conclusions on other terms in the formula: asymmetry-dependent Coulomb, Wigner & pairing + asymmetry-independent, due to (N - Z)/A - A correlations along stability line [PD NPA727(03)233]!

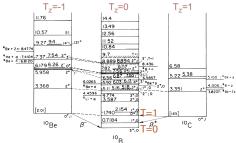
Best would be to study the symmetry energy in isolation from the rest of *E*-formula! Absurd?!

Charge invariance to rescue: lowest nuclear states characterized by different isospin values (T, T_z) , $T_z = (Z - N)/2$. Nuclear energy scalar in isospin space:

sym energy

$$E_a = a_a(A) \, \frac{(N-Z)^2}{A} = 4 \, a_a(A) \, \frac{T_z^2}{A}$$

$$\to E_a = 4 a_a(A) \frac{T^2}{A} = 4 a_a(A) \frac{T(T+1)}{A}$$


Generalities

$a_a(A)$ Nucleus-by-Nucleus $\rightarrow E_a = 4 a_a(A) \frac{T(T+1)}{A}$

In the ground state *T* takes on the lowest possible value $T = |T_z| = |N - Z|/2$. Through '+1' most of the Wigner term absorbed.

Formula generalized to the lowest state of a given T (e.g. Jänecke *et al.*, NPA728(03)23).

?Lowest state of a given T: isobaric analogue state (IAS) of some neighboring nucleus ground-state.

Study of changes in the symmetry term possible nucleus by nucleus

Queries in the Context of Data

Are expansions valid? Coefficient values??

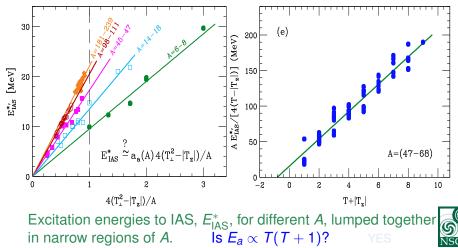
$$E_{\mathsf{IAS}}^* = E_{\mathsf{IAS}} - E_{\mathsf{gs}} \stackrel{?}{=} \frac{4 a_a(A)}{A} \Delta [T(T+1)] + \Delta E_{\mathsf{mic}}$$

Is the excitation energy linear in the isospin squared??

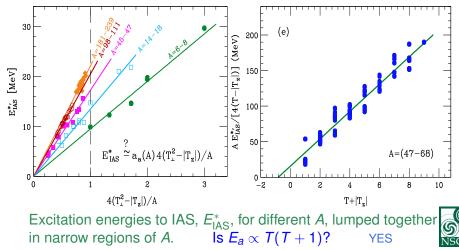
$$\frac{A}{a_a(A)} \stackrel{?}{=} \frac{A}{a_a^V} + \frac{A^{2/3}}{a_a^S}$$

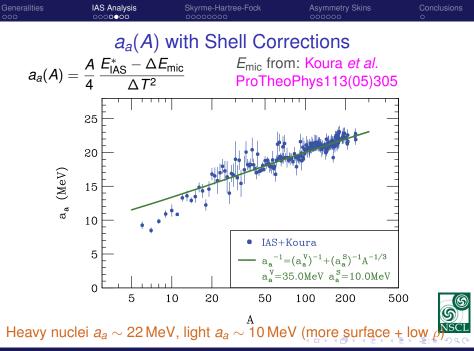
or

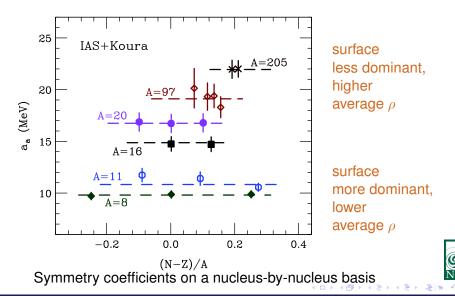
$$a_a^{-1} \stackrel{?}{=} (a_a^V)^{-1} + (a_a^S)^{-1} A^{-1/3}$$


Is the volume-surface separation valid?

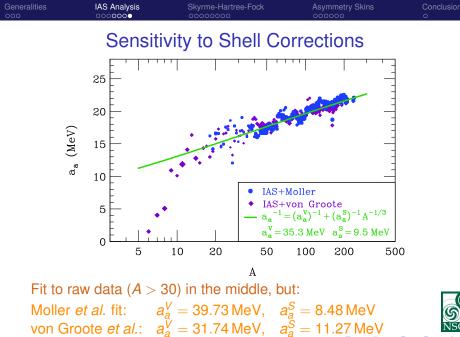
 \Rightarrow From an $a_a^V \cdot a_a^S$ fit can one learn about a_a^V and *L* for uniform matter?



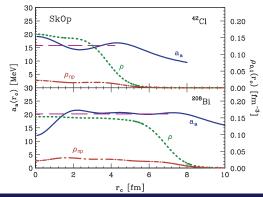

Shell corrections: Koura et al. ProTheoPhys113(05)305



Shell corrections: Koura et al. ProTheoPhys113(05)305



Z-Dependence of Symmetry Coefficients?

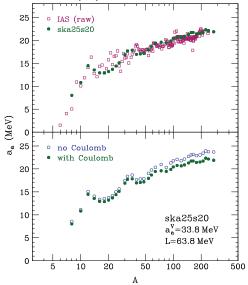

Symmetry Energy

Danielewicz

Comparisons to Skyrme-Hartree-Fock Issues in data-theory comparisons (codes by P.-G. Reinhard): 1. No isospin invariance in SHF - impossible to follow the procedure for data

- 2. Shell corrections not feasible at such scrutiny as for data
- 3. Coulomb effects.

Solution: Procedure that yields the same results as the energy, in the bulk limit, but is weakly affected by shell effects:


$$\frac{(N-Z)_{r < r_c}}{N-Z} = \frac{C_{r < r_c}}{C}$$
$$= \frac{a_a}{A a_a^V} \int_{r < r_c} \frac{\rho}{S(\rho)}$$

Symmetry Energy

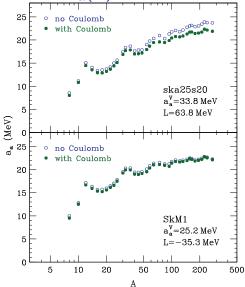
Skyrme-Hartree-Fock

Asymmetry Skins

$a_a(A)$ from Mean-Field Calculations

Skyrme-Hartree-Fock theory (codes by P.-G. Reinhard)

Similar behavior with *A* as for IAS


< Ξ

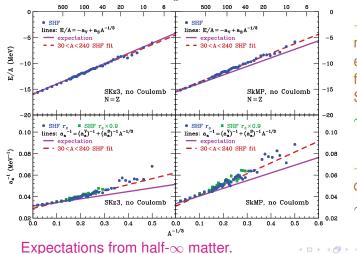
Skyrme-Hartree-Fock

Asymmetry Skins

$a_a(A)$ from Different Mean Fields

?Slope *L* in ρ \Leftrightarrow slope in *A*??

Less impact of the slope *L* at ρ_0 than expected!


??Difficulty for *L* determination??

▶ < Ξ >

Symmetry Energy

Model-Independent Large-*A* Expansion?? Symbols: results of spherical no-Coulomb SHF calcs ⇒ Lines: volume-surface decomposition - expectation vs fit

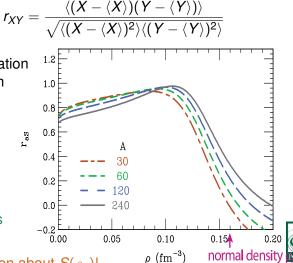
→Symmetric matter energy f/sample Skyrmes ~ Works

 \rightarrow Symmetry coefficient

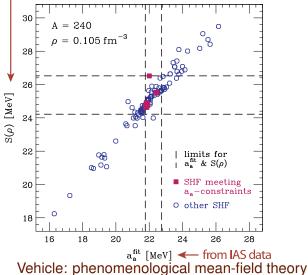
 $\sim \mathsf{Not}...$

Symmetry Energy

Can $S(\rho)$ Be Constrained??!


Pearson correlation coefficient

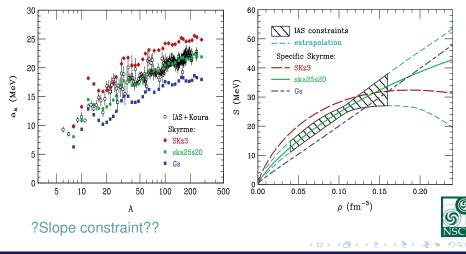
 $|r| \sim 1$ - strong correlation $r \sim 0$ - no correlation



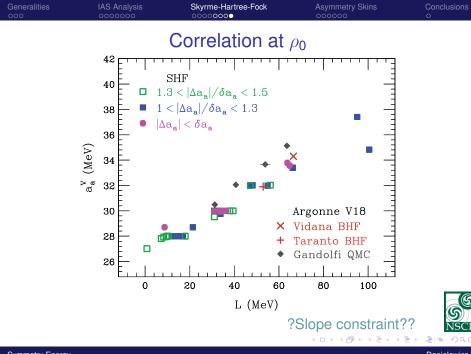
Ensemble of Skyrmes

Nearly no information about $S(\rho_0)!$

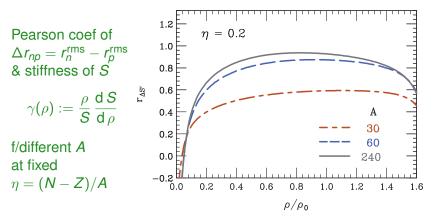
Symmetry-Energy Correlations When Strong



NO $S(\rho) \approx a_a$!


Constraints on Symmetry Energy $S(\rho)$

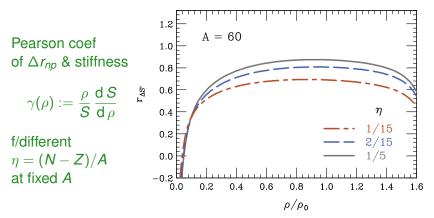
Demand that Skyrme approximates IAS results at A > 30 produces a constraint area for $S(\rho)$:



Symmetry Energy

Danielewicz

Asymmetry Skin & Energy Stiffness

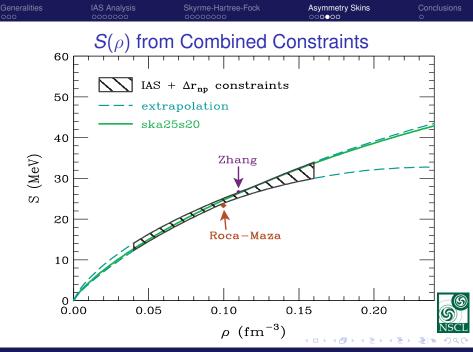


고나님

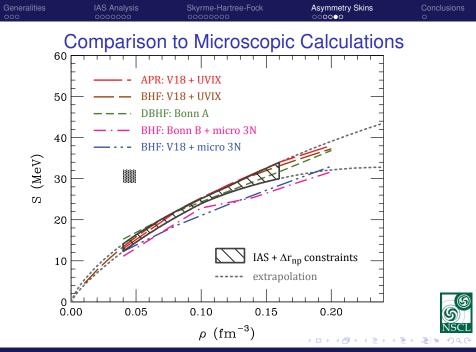
> < ≣

Asymmetry Skin & Energy Stiffness

고나님

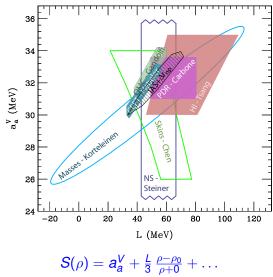

3

Generalities	IAS Analysis	Skyrme-Hartree-Fock	Asymmetry Skins	Conclusions
			00000	


Asymmetry Skins from Measurements

Nucleus	Reference	Data Source	Δr_{np} [fm]	Δr_{np}^{GF} [fm]
⁴⁸ Ca	Friedman [92]	pionic atoms	0.13 ± 0.06	
	Gils et al. [93]	elastic α scattering	0.175 ± 0.050	
	Ray [94]	elastic \vec{p} scattering	0.229 ± 0.050	
	Clark et al. [95]	elastic p scattering	0.103 ± 0.040	
	Shlomo et al. [96]	elastic p scattering	0.10 ± 0.03	
	Gibbs et al. [97]	elastic π scattering	0.11 ± 0.04	
		combined results	0.129± 0.053 [⊠]	0.215 ± 0.012

²⁰⁷ Pb	Starodubsky et al. [99]	elastic p scattering	0.186 ± 0.041	0.175 ± 0.023
²⁰⁸ Pb	Starodubsky et al. [99]	elastic p scattering	0.197 ± 0.042	
	Ray [94]	elastic \vec{p} scattering	0.16 ± 0.05	
	Clark et al. [95]	elastic p scattering	0.119 ± 0.045	
	Zenihiro et a l. [98]	elastic p scattering	0.211± 0.063	
	Friedman [92]	elastic π^+ scattering	0.11 ± 0.06	
	Friedman [92]	pionic atoms	0.15 ± 0.08	
		combined results	0.159± 0.041 [⊠]	0.179 ± 0.023



Danielewicz

Danielewicz

프 에 에 프 어

- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- For $A \gtrsim 25$, $a_a(A)$ may be fitted with $a_a^{-1} = (a_a^V)^{-1} + (a_a^S)^{-1} A^{-1/3}$, where $a_a^V \approx 35$ MeV and $a_a^S \approx 10$ MeV.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- Including skin sizes, significant, $\leq \pm 1.0$ MeV, constraints on $S(\rho)$ at densities $\rho = (0.04 0.13)$ fm⁻³.
- Around ρ₀: strongly correlated a^V_a = (30.2–33.7) MeV and L = (35–70) MeV.

To do: Dedicated Skyrme interactions. PD&Lee arXiv:1307.4130

- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- For $A \gtrsim 25$, $a_a(A)$ may be fitted with $a_a^{-1} = (a_a^V)^{-1} + (a_a^S)^{-1} A^{-1/3}$, where $a_a^V \approx 35 \text{ MeV}$ and $a_a^S \approx 10 \text{ MeV}$.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- Including skin sizes, significant, $\leq \pm 1.0$ MeV, constraints on $S(\rho)$ at densities $\rho = (0.04 0.13)$ fm⁻³.
- Around ρ_0 : strongly correlated $a_a^V = (30.2-33.7)$ MeV and L = (35-70) MeV.

To do: Dedicated Skyrme interactions. PD&Lee arXiv:1307.4130

- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- For $A \gtrsim 25$, $a_a(A)$ may be fitted with $a_a^{-1} = (a_a^V)^{-1} + (a_a^S)^{-1} A^{-1/3}$, where $a_a^V \approx 35 \text{ MeV}$ and $a_a^S \approx 10 \text{ MeV}$.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- Including skin sizes, significant, $\leq \pm 1.0$ MeV, constraints on $S(\rho)$ at densities $\rho = (0.04 0.13)$ fm⁻³.
- Around ρ_0 : strongly correlated $a_a^V = (30.2-33.7)$ MeV and L = (35-70) MeV.

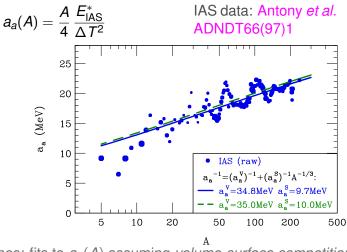
To do: Dedicated Skyrme interactions. PD&Lee arXiv:1307.4130

- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- For $A \gtrsim 25$, $a_a(A)$ may be fitted with $a_a^{-1} = (a_a^V)^{-1} + (a_a^S)^{-1} A^{-1/3}$, where $a_a^V \approx 35 \text{ MeV}$ and $a_a^S \approx 10 \text{ MeV}$.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- Including skin sizes, significant, $\leq \pm 1.0$ MeV, constraints on $S(\rho)$ at densities $\rho = (0.04-0.13)$ fm⁻³.
- Around ρ_0 : strongly correlated $a_a^V = (30.2-33.7)$ MeV and L = (35-70) MeV.

To do: Dedicated Skyrme interactions. PD&Lee arXiv:1307.4130

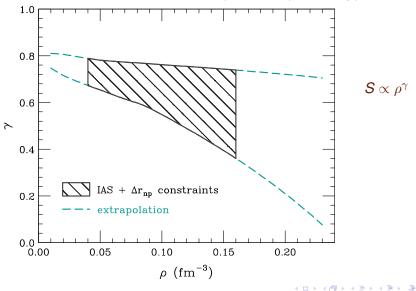
- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- For $A \gtrsim 25$, $a_a(A)$ may be fitted with $a_a^{-1} = (a_a^V)^{-1} + (a_a^S)^{-1} A^{-1/3}$, where $a_a^V \approx 35 \text{ MeV}$ and $a_a^S \approx 10 \text{ MeV}$.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- Including skin sizes, significant, $\leq \pm 1.0$ MeV, constraints on $S(\rho)$ at densities $\rho = (0.04-0.13)$ fm⁻³.
- Around ρ₀: strongly correlated a^V_a = (30.2–33.7) MeV and L = (35–70) MeV.

To do: Dedicated Skyrme interactions. PD&Lee arXiv:1307.4130

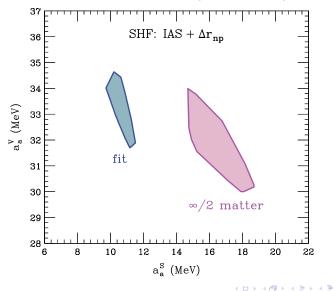


- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- For $A \gtrsim 25$, $a_a(A)$ may be fitted with $a_a^{-1} = (a_a^V)^{-1} + (a_a^S)^{-1} A^{-1/3}$, where $a_a^V \approx 35$ MeV and $a_a^S \approx 10$ MeV.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- Including skin sizes, significant, $\leq \pm 1.0$ MeV, constraints on $S(\rho)$ at densities $\rho = (0.04-0.13)$ fm⁻³.
- Around ρ₀: strongly correlated a^V_a = (30.2–33.7) MeV and L = (35–70) MeV.

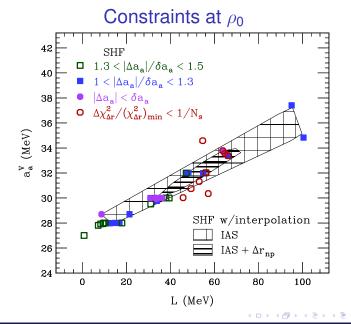
To do: Dedicated Skyrme interactions. PD&Lee arXiv:1307.4130



Lines: fits to $a_a(A)$ assuming volume-surface competition analogous to that for E_1 . ??Fundamental knowledge??



Stiffness of the Symmetry Energy



Robustness of Macroscopic Description?

Symmetry Energy

3