

Construction of time-projection chambers to probe the symmetry energy at high density

R. Shane, for the SAMURAI-TPC collaboration

Constraints on the Nuclear Symmetry Energy

- Nuclear EOS: Impacts heavy-ion collisions, supernovae, neutron stars...
- Largest uncertainty: Density dependence of the symmetry energy

At $\rho < \rho_0$, consistent constraints on symmetry energy obtained from different experiments:

Heavy-ion collisions, giant dipole resonances, isobaric-analog states, pygmy dipole resonances, Pb skin-thickness measurements, neutron-star radius

M.B. Tsang et al., Phys. Rev. C 86, 015803 (2012)

... from flow/yields in heavy-ion collisions

- Nuclear EOS: Impacts heavy-ion collisions, supernovae, neutron stars...
- Largest uncertainty: Density dependence of the symmetry energy

 Conduct heavy-ion collisions at 200-300A MeV with rare isotope beams (isospin multiplets):

¹⁰⁸Sn + ¹¹²Sn, ¹³²Sn + ¹²⁴Sn, ³⁶Ca + ⁴⁰Ca, ⁵²Ca + ⁴⁸Ca

- Measure differential flow and yield ratios for (π⁺ & π⁻), (p & n), (³H & ³He)
- In addition to constraining the symmetry energy at $\rho \approx 2\rho_0$, we are sensitive to nucleon effective masses and in-medium nucleon cross sections.
- Use TPCs to perform these types of experiments

Time-projection chamber operation

TPC is a particle tracker sitting in a magnet

- Charged collision fragments ionize detector gas
- Electrons drift in E-field toward charge-sensing pads ۲
 - **Positions** and **time** of arrival \rightarrow 3D path

Pad plane

2D path in horizontal

TPCs for symmetry-energy studies

	AT-TPC	SAMURAI TPC
Magnet	Solenoid	H-Dipole
Geometry	Cylindrical	Rectangular
Multiplication	MICROMEGAS	Wires

AT-TPC: *ReA3*

- ReA3: reaccelerated rare-isotopes, energies up to 3 A MeV
- Superconducting solenoid magnet, 2 Tesla field

Slide adapted from T. Ahn

S-TPC: SAMURAI Spectrometer

• SAMURAI: high-resolution spectrometer at RIKEN, Japan

S-TPC: SAMURAI Spectrometer

- SAMURAI: high-resolution spectrometer at RIKEN, Japan
- Auxiliary detectors for heavy-ions, neutrons, and trigger ۲

0.5T, 3T

1 m

80 cm

75 cm

S-TPC: SAMURAI Spectrometer

- SAMURAI: high-resolution spectrometer at RIKEN, Japan
- Auxiliary detectors for heavy-ions, neutrons, and trigger

Photo courtesy of T. Isobe

AT-TPC: Design

Slide adapted from T. Ahn

S-TPC: Design

- Considerations
 - Good track-reconstruction efficiency for pions
 - Physical space constraints (limit drift length, vertical spatial res.)
 - Tolerances (affect momentum resolution)
- Design influenced heavily by EOS and STAR TPCs

GEANT simulation ¹³²Sn+¹²⁴Sn collisions at E/A=300 MeV

Pad plane area	1.34m x 0.86 m
Number of pads	12096 (108 x 112)
Pad size	12 mm x 8 mm
Drift distance	53 cm
Pressure	1 atm
dE/dx range	Z=1-8 (GET electr.)
Two track resolution	2.5 cm
Multiplicity limit	200 (may impact pion eff. in large systems)

SAMURAI TPC: Exploded View

S-TPC: *Field cage*

- Thin walls for particles to exit, but maintain structural stability
 - 8 circuit boards with copper strips
- Removable beam windows
 - 25um mylar entry window
 - 125um kapton exit window
- Cathode (bottom)
 - Aluminum honeycomb: light, strong
 - Graphite coating: incr. work function
- Gas tight (all seams glued)
 - Allows separate gas volumes:
 - P10 detector gas in FC
 - P10 or dry N₂ insulation gas
 - Useful in active-target mode

Gluing field cage together

S-TPC: Pad and wire planes

- Pad plane is *flat to within 0.005" (125 um)*
- Ready for testing (mount gating grid later)

Plane	Material	Diam (µm)	Pitch (mm)	Height (mm)	Tens. (N)	Volt. (V)	# of wires
Anode	Au-W	20	4	4	0.5	~1400	364
Ground	Cu-Be	75	1	8	1.2	0	1456
Gating	Cu-Be	75	1	14	1.2	100±30	1456

Based on STAR-TPC operating parameters

Pad plane laser measurements

S-TPC: Assembly completed May 2013

AT-TPC and S-TPC: Readout electronics

- S-TPC: 1k-ch. testing system using STAR FEE
 - Hardware assembled and tested
 - Will fully test completed detector this summer
- Both: Generic Electronics system for TPCs
 - Wide dynamic range: effectively 10.5 bits
 - Self triggering (useful for active targets)
 - AsAd is 256 chan (four 64 ch. ASICs)
 - Capable of handling 1KHz 10Gb/s
 - GET is collaborative effort of Saclay, Bordeaux, GANIL and NSCL
 - Status/completion:
 - AGET 1st batch prod.: May 2013
 - ASAD 1st batch prod.: July 2013
 - COBO 2nd prototype: April 2013,
 - 1^{st} batch production July 2013
 - AT-TPC will be first detector to use

STAR FEE on S-TPC

S-TPC: Preliminary testing with STAR FEE cards

Plots courtesy of R. Wang

S-TPC: Preliminary testing with GET system

Cosmic Event 0: July 24th, 2013 @NSCL

>500 cosmic events so far

CoBo_2013-07-25T07_23_58.054_0000 - Frame no. 0 - Event no. 0 - AGET no. 0

Plot shows induced signal on each pad

+ Channel 0

Plots courtesy of T. Isobe

AT-TPC: Proposed research program

Measurement	Physics	Beam Examples	Beam Energy (A MeV)	Min Beam (pps)	Scientific Leader
Transfer & Resonant Reactions	Nuclear Structure	³² Mg(d,p) ³³ Mg ²⁶ Ne(p,p) ²⁶ Ne ^{66,,70} Ni(p,p)	3	100	Kanungo
Astrophysical Reactions	Nucleosynthesis	25 Al(3 He,d) 26 Si	3	100	Famiano, Montes
Fusion and Breakup	Nuclear Structure	${}^{8}\mathrm{B}\mathrm{+}^{40}\mathrm{Ar}$	3	1000	Kolata
Transfer	Pairing	⁵⁶ Ni+ ³ He	5-19	1000	Macchiavelli
Fission Barriers	Nuclear Structure	199 Tl, 192 Pt	20 - 60	10,000	Phair
Giant Resonances	Nuclear EOS, Nuclear Astro.	⁵⁴ Ni- ⁷⁰ Ni, ¹⁰⁶ Sn- ¹²⁷ Sn	50 - 200	50,000	Garg
Heavy Ion Reactions	Nuclear EOS	106 Sn - 126 Sn, 37 Ca - 49 Ca	50 - 200	50,000	Lynch

Slide adapted from T. Ahn

PAT-TPC: Measurements at Notre Dame

Twinsol, superconducting solenoid magnets

- Half-scale prototype AT-TPC
- d(⁷Li,³He)⁶He, 15 MeV
- ¹³C(¹¹B, ¹⁴N)¹⁰Be, 40 MeV
- Clustering/n correlation, molecular structure, fusion

Slide adapted from T. Ahn

S-TPC: Proposed research program

Probe	Devices	E _{lab} /A (MeV)	Part./s	Main Foci	Possible Reactions	FY
π ⁺ π ⁻ ,p, n,t, ³ He	TPC Nebula	200-300 350	104-105	E _{sym} m _n *, m _p *	${}^{132}Sn + {}^{124}Sn, {}^{108}Sn + {}^{112}Sn, \\ {}^{52}Ca + {}^{48}Ca, {}^{36}Ca + {}^{40}Ca \\ {}^{124}Sn + {}^{124}Sn, {}^{112}Sn + {}^{112}Sn $	2014
π ⁺ π ⁻ p, n,t, ³ He	TPC Nebula	200-300	10 ⁴ -10 ⁵	$\sigma_{nn}, \sigma_{pp} \ \sigma_{np}$	¹⁰⁰ Zr+ ⁴⁰ Ca, ¹⁰⁰ Ag+ ⁴⁰ Ca, ¹⁰⁷ Sn+ ⁴⁰ Ca, ¹²⁷ Sn+ ⁴⁰ Ca	2015 - 2017

Slide adapted from T. Murakami

Summary and outlook

- TPCs are useful tools to probe nuclear symmetry energy
 - Measure yield ratios and flows from HIC to improve constraints near $\rho \approx 2\rho_0$
- AT-TPC
 - Successful experiments with prototype at Notre Dame
 - Full-scale detector construction underway, for use with ReA3
- SAMURAI TPC
 - Construction finished in spring, testing ongoing
 - Successfully tested GET readout and obtained cosmic-ray data
 - Begin with Sn+Sn collisions in 2014 at RIKEN

This work is supported by the Department of Energy under Grant DE-SC0004835

SAMURAI-TPC Collaboration members

United States: J. Barney, Z. Chajecki, P. Danielewicz, J. Estee, M. Famiano, U. Garg, W. Lynch, A. McIntosh, R. Shane, M. B. Tsang, S. Tangwancharoen, G. Westfall, S. Yennello, M. Youngs

Japan: K. leki, T. Isobe, T. Murakami, J. Murata, Y. Nakai, N. Nakatsuka, S. Nishimura, A. Ono, H. Sakurai, A. Taketani

China: F. Lu, R. Wang, Z. Xiao, Y. Zhang

United Kingdom: M. Chartier, R. Lemmon, W. Powell

France: E. Pollacco

Italy: G. Verde

Korea: B. Hong, G. Jhang

Poland: J. Lukasik

Special thanks

NSCL staff: J. Yurkon, D. Bazin, J. Pline, and many others HiRA group students: R. H. Showalter, J. Winkelbauer TAMU staff: R. Olsen

