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III. THE EQUATION OF STATE OF UNIFORM NUCLEAR MATTER

Useful parameters characterizing the EoS of isospin asymmetric nuclear matter around

SNM (proton fraction x = 0.5; � = 0) and the saturation density of SNM ns can be derived

by expanding E(n, x) in a power series in the isospin asymmetry � = 1� 2x and the density

parameter ⇥ = n�n0
3n0

E(n, x) = E0(n) + S(n)�2 + ... (9)

E0(n) = E0 +
1
2K0⇥

2 + ... (10)

S(n) = J + L⇥+ 1
2Ksym⇥

2 + ... (11)

EPNM(n) ⇥ E0(n) + S(n) (12)

E0(n) = E(n, 0.5) is the binding energy per nucleon of SNM and S(n) = 1
2⌃

2E(n, x)/⌃�2x=0.5

is the nuclear symmetry energy. K0 is the incompressibility of SNM at saturation density.

J = S(n0), L = ⌃S(n)/⌃⇥|n=n0 and Ksym are the value of the symmetry energy, its slope

and its curvature at saturation density. In particular, the pressure of pure neutron matter at

sub-saturation densities, which plays a large role in determining the equilibrium composition

of the crust, can be expressed as

PPNM =
n2

3n0
[L+ (K0 +Ksym)⇥+ ...]. (13)

to the leading two orders.

Throughout most of this paper we will mainly use the modified Skyrme-like (MSL) pa-

rameterization of the nuclear matter EoS E(n, �) [59] (see appendix A) as our description

of uniform nuclear matter as a function of density and isospin asymmetry. The MSL model

has the same number of free parameters as the Skyrme description of uniform nuclear mat-

ter; the di�erence is that the MSL parameters can be analytically related to the properties

of uniform nuclear matter at saturation density, allowing a smooth variation of, e.g., the

symmetry energy at saturation J and its slope L, while holding fixed the isospin symmetric

part of the EoS. For comparison, we will also use a similar phenomenological EoS whose

form was originally written down by Bludman and Dover [60] (which we will refer to as BD,

see also appendix A), which was later modified and used to study finite nuclei and inner

crust composition by Oyamatsu and Iida (OI) [10, 61], and a selection of Skyrme EoSs [62]

whose basic properties are given in Table 1. The BD model has two fewer free parameters
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nucleon interactions as they are manifested in a many-nucleon context. A useful concept
that bridges the gap between ab initio nucleon-nucleon calculations, nuclear experimental
observables, and neutron star matter is that of uniform nuclear matter (NM). This is an
idealized system, homogeneous and infinite in extent, of neutrons and protons interacting
solely via the strong force. The energy per particle of such a system at a density ⇥ and
proton fraction x, E(⇥, x), is referred to as the nuclear matter equation of state (NM EOS).
In the regions of the neutron star core where protons and neutrons exist, the NM EOS
can be combined with the electron energy, and under conditions of charge neutrality and
beta-equilibrium gives an EOS for the core. In the inner crust, the NM EOS can be used
to describe the dripped neutrons (x = 0) and the bulk matter in the nuclear clusters. A
consistent model for the EOS of crust and core necessarily uses a unique NM EOS, and one
should expect parameters characteristic of a given NM EOS to correlate with both crust and
core properties.

Nuclear matter with equal numbers of neutrons and protons (x = 0.5) is referred to as
symmetric nuclear matter (SNM); nuclear matter with x = 0.0 is naturally referred to as
pure neutron matter (PNM). Nuclei on Earth contain closely symmetric nuclear matter at
densities close to nuclear saturation density ⇥0 ⇧ 2.7 ⇥ 1014 g cm�3 ⇤ 0.16 fm�3 = n0,
where we use n to refer to baryon number density. Thus experiment has constrained the
properties of E(⌅ n0,⌅ 0.5) to within relatively tight ranges, but the properties of PNM
remain uncertain from an experimental standpoint. In the past decade, much experimen-
tal activity has been devoted to extending our knowledge of nuclear interactions to more
neutron-rich systems and to higher and lower densities. Although we cannot produce pure
neutron matter in the laboratory, we can produce matter with proton fractions as low as
x ⇧ 0.3 in certain neutron rich isotopes and in the products of heavy ion collisions. This
allows us to obtain information on how E(⌅ n0, x) changes as x decreases.

By expanding E(n, x) about x = 0.5 using the isospin asymmetry variable � = 1�2x,
we can define a useful quantity called the symmetry energy S(n),

E(n, �) = E0(n) + S(n)�2 + ...; S(n) =
1

2

⌥2E(n, �)

⌥�2

����
�=0

, (1)

which encodes the change in the energy per particle of NM as one moves away from isospin
symmetry. This allows extrapolation to the highly isospin asymmetric conditions in neutron
stars. The simplest such extrapolation, referred to as the parabolic approximation (PA),
truncates the expansion to second order, giving

EPNM(n) ⇤ E(n, � = 1) ⇧ E0(n) + S(n) (2)

for the PNM EOS. Expanding the symmetry energy about ⇤ = 0 where ⇤ = n�n0
3n0

we
obtain

S(n) = J + L⇤+ 1
2Ksym⇤

2 + ..., (3)

where J , L and Ksym are the symmetry energy, its slope and its curvature at saturation
density.

Since neutron star matter contains a low fraction of protons, many inner crust and global
stellar properties are sensitive to the symmetry energy parameters J ,L, etc. To give a sim-
ple example, the pressure of PNM at saturation density is given by PPNM(n0)=n0L/3. The

K(α) = K0 + Kasyα
2 (2.12)

where K0 is the incompressibility of symmetric nuclear matter at the nuclear matter saturation
density ρ0. TheKasy in the isospin-dependent part [42]

Kasy ≈ Ksym − 6L (2.13)

characterizes the density dependence of the nuclear symmetry energy. In principle, the infor-
mation on Kasy can be extracted experimentally by measuring the giant monopole resonance
(GMR) of neutron-rich nuclei. Earlier attempts to extract the value of Kasy from experimental
GMR data resulted in widely different values. For example, a value of Kasy = −320 ± 180
MeV was obtained in Ref. [228] from a study of the systematics of GMR in the isotopic chains
of Sn and Sm while the K0 was found to be 300 ± 25 MeV, in contrast with the commonly
accepted value of 230 ± 10 MeV. A subsequent systematic study of the GMR of finite nuclei
leads to a constraint of −566 ± 1350 < Kasy < 139 ± 1617 MeV, depending on the mass
region of nuclei and the number of parameters used in parameterizing the incompressibility of
finite nuclei [229]. The large uncertainties in the extracted Kasy thus does not allow one to dis-
tinguish the different nuclear symmetry energies from theoretical models. Very recently, from
measurements of the isotopic dependence of GMR in the even-A Sn isotopes a more stringent
value ofKasy = −550±100MeV was obtained in Ref. [230]. This result is consistent with that
extracted from the analysis of the isospin diffusion data [56,71].

Fig. 8. (Color online) Left window: Density dependence of the nuclear symmetry energy Esym(ρ) from
SHFwith 21 sets of Skyrme interaction parameters [71]. Right window: Same as left panel from the RMF
model for the parameter sets NL1, NL2, NL3, NL-SH, TM1, PK1, FSU-Gold, HA, NLρ, and NLρδ in the
nonlinear RMF model (solid curves); TW99, DD-ME1, DD-ME2, PKDD, DD, DD-F, and DDRH-corr
in the density-dependent RMF model (dashed curves); and PC-F1, PC-F2, PC-F3, PC-F4, PC-LA, and
FKVW in the point-coupling RMF model (dotted curves) [211].

The symmetry energies at normal nuclear matter density from various theoretical models are
usually tuned to that determined from the empirical liquid-dropmass formula, which has a value
of Esym(ρ0) around 30 MeV [8,9]. For example, in the non-relativistic SHF approach [72], the
predicted values forEsym(ρ0) are between 26 and 35MeV depending on the nuclear interactions
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nucleon interactions as they are manifested in a many-nucleon context. A useful concept
that bridges the gap between ab initio nucleon-nucleon calculations, nuclear experimental
observables, and neutron star matter is that of uniform nuclear matter (NM). This is an
idealized system, homogeneous and infinite in extent, of neutrons and protons interacting
solely via the strong force. The energy per particle of such a system at a density ⇥ and
proton fraction x, E(⇥, x), is referred to as the nuclear matter equation of state (NM EOS).
In the regions of the neutron star core where protons and neutrons exist, the NM EOS
can be combined with the electron energy, and under conditions of charge neutrality and
beta-equilibrium gives an EOS for the core. In the inner crust, the NM EOS can be used
to describe the dripped neutrons (x = 0) and the bulk matter in the nuclear clusters. A
consistent model for the EOS of crust and core necessarily uses a unique NM EOS, and one
should expect parameters characteristic of a given NM EOS to correlate with both crust and
core properties.

Nuclear matter with equal numbers of neutrons and protons (x = 0.5) is referred to as
symmetric nuclear matter (SNM); nuclear matter with x = 0.0 is naturally referred to as
pure neutron matter (PNM). Nuclei on Earth contain closely symmetric nuclear matter at
densities close to nuclear saturation density ⇥0 ⇧ 2.7 ⇥ 1014 g cm�3 ⇤ 0.16 fm�3 = n0,
where we use n to refer to baryon number density. Thus experiment has constrained the
properties of E(⌅ n0,⌅ 0.5) to within relatively tight ranges, but the properties of PNM
remain uncertain from an experimental standpoint. In the past decade, much experimen-
tal activity has been devoted to extending our knowledge of nuclear interactions to more
neutron-rich systems and to higher and lower densities. Although we cannot produce pure
neutron matter in the laboratory, we can produce matter with proton fractions as low as
x ⇧ 0.3 in certain neutron rich isotopes and in the products of heavy ion collisions. This
allows us to obtain information on how E(⌅ n0, x) changes as x decreases.

By expanding E(n, x) about x = 0.5 using the isospin asymmetry variable � = 1�2x,
we can define a useful quantity called the symmetry energy S(n),

E(n, �) = E0(n) + S(n)�2 + ...; S(n) =
1
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which encodes the change in the energy per particle of NM as one moves away from isospin
symmetry. This allows extrapolation to the highly isospin asymmetric conditions in neutron
stars. The simplest such extrapolation, referred to as the parabolic approximation (PA),
truncates the expansion to second order, giving
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for the PNM EOS. Expanding the symmetry energy about ⇤ = 0 where ⇤ = n�n0
3n0
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obtain

S(n) = J + L⇤+ 1
2Ksym⇤
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where J , L and Ksym are the symmetry energy, its slope and its curvature at saturation
density.

Since neutron star matter contains a low fraction of protons, many inner crust and global
stellar properties are sensitive to the symmetry energy parameters J ,L, etc. To give a sim-
ple example, the pressure of PNM at saturation density is given by PPNM(n0)=n0L/3. The

K(α) = K0 + Kasyα
2 (2.12)

where K0 is the incompressibility of symmetric nuclear matter at the nuclear matter saturation
density ρ0. TheKasy in the isospin-dependent part [42]

Kasy ≈ Ksym − 6L (2.13)

characterizes the density dependence of the nuclear symmetry energy. In principle, the infor-
mation on Kasy can be extracted experimentally by measuring the giant monopole resonance
(GMR) of neutron-rich nuclei. Earlier attempts to extract the value of Kasy from experimental
GMR data resulted in widely different values. For example, a value of Kasy = −320 ± 180
MeV was obtained in Ref. [228] from a study of the systematics of GMR in the isotopic chains
of Sn and Sm while the K0 was found to be 300 ± 25 MeV, in contrast with the commonly
accepted value of 230 ± 10 MeV. A subsequent systematic study of the GMR of finite nuclei
leads to a constraint of −566 ± 1350 < Kasy < 139 ± 1617 MeV, depending on the mass
region of nuclei and the number of parameters used in parameterizing the incompressibility of
finite nuclei [229]. The large uncertainties in the extracted Kasy thus does not allow one to dis-
tinguish the different nuclear symmetry energies from theoretical models. Very recently, from
measurements of the isotopic dependence of GMR in the even-A Sn isotopes a more stringent
value ofKasy = −550±100MeV was obtained in Ref. [230]. This result is consistent with that
extracted from the analysis of the isospin diffusion data [56,71].

Fig. 8. (Color online) Left window: Density dependence of the nuclear symmetry energy Esym(ρ) from
SHFwith 21 sets of Skyrme interaction parameters [71]. Right window: Same as left panel from the RMF
model for the parameter sets NL1, NL2, NL3, NL-SH, TM1, PK1, FSU-Gold, HA, NLρ, and NLρδ in the
nonlinear RMF model (solid curves); TW99, DD-ME1, DD-ME2, PKDD, DD, DD-F, and DDRH-corr
in the density-dependent RMF model (dashed curves); and PC-F1, PC-F2, PC-F3, PC-F4, PC-LA, and
FKVW in the point-coupling RMF model (dotted curves) [211].

The symmetry energies at normal nuclear matter density from various theoretical models are
usually tuned to that determined from the empirical liquid-dropmass formula, which has a value
of Esym(ρ0) around 30 MeV [8,9]. For example, in the non-relativistic SHF approach [72], the
predicted values forEsym(ρ0) are between 26 and 35MeV depending on the nuclear interactions
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•  What	  constraints	  can	  we	  add	  from	  astrophysical	  observa,on?	  
•  How	  can	  experimental	  constraints	  inform	  our	  interpreta,on	  of	  observa,ons?	  



Not	  full	  story:	  Satura,on	  constraints	  on	  J,L	  not	  necessarily	  constraining	  
at	  high	  densi,es	  

•  Can	  we	  find	  astrophysical	  observables	  that	  are	  sensi,ve	  to	  high	  density	  EOS/symmetry	  	  
	  energy?	  (e.g.	  neutrino	  signal	  from	  PNS	  -‐	  Roberts	  et	  al	  PRL108	  (2012))	  
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NS-‐NS	  Mergers	  



	  
	  
Qij	  

a	  

•  Tidal	  field	  Eij	  drives	  f-‐mode	  (quadrupole	  	  
deforma,on	  Qij)	  
•  Resul,ng	  energy	  transfer	  appears	  	  
as	  phase	  shio	  in	  gravita,onal	  waveform	  
•  Detectable	  cleanly	  f≈100-‐400Hz	  
•  Phase	  shio	  depends	  on	  one	  parameter:	  
,dal	  polarizability	  λ	  (or	  Love	  number	  k2)	  

Equilibrium	  ,des	  

M,R	  
M’	  

Flanagan,	  Hinderer,	  PRD77,	  021502	  (2008)	  
Hinderer	  et	  al,	  PRD81,	  123016	  (2010)	  



	  Tidal	  polarizability	  and	  Love	  number	  

•  Tidal	  polarizability	  λ	  func,on	  of	  global	  NS	  proper,es	  (M,R)	  and	  internal	  structure	  (func,on	  
yR	  obtained	  by	  integra,on	  out	  from	  center	  of	  star)	  
•  Clearly	  discriminates	  between	  NSs	  and	  Strange	  stars	  	  

	   	   	   	   	   	   	   	  -‐	  Postnikov,Prakash,Lakmer,	  PRD82,	  024012	  (2010)	  
•  Sensi,vity	  to	  high	  density	  symmetry	  energy?	  
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for the MSL EOS are displayed in the right panel of Fig. 3. Doing so naturally introduces
correlation between J and L; in the right panel of Fig. 2 we display the correlation obtained
in this way for the MSL model. It is fit by J = 20.53 + 0.207L. For reference, the correla-
tions obtained directly from the PNM calculations of HS and GCR, using the PA (Eq. (2))
with E0 = �16 MeV to obtain J from EPNM(n0), are depicted in Fig. 3; although offset
slightly from the MSL results, their slopes are similar. A similar correlation is obtained
from the Hugenholtz-Van-Hove (HVH) theorem which predicts a relation between J and L
whose uncertainty can be related to global nucleon optical potentials [63]

One experimental probe of the symmetry energy is the measurement of neutron skins
of nuclei. This probes the symmetry energy at densities around n = 0.1fm�3; thus many
models fix the symmetry energy at this density. In the right panel of Fig. 3 we show the
MSL PNM EOSs constrained by S(0.1fm�3) = 26 MeV; varying L then produces a steeper
correlation with J , also shown in the right panel of Fig. 2; J = 29.0 + 0.1L. It is worth
noting that increasing the density at which one fixes the symmetry energy in a given model,
increases the slope in the J-L plane.

Similar correlations are obtained from two relativistic mean field models [70, 71] and
from a best fit to a wide selection of model predictions of J and L [72], also shown in the
left panel of Fig. 2. Finally we also show correlations that emerge from nuclear mass fits
[64, 65] and analysis of data from heavy ion collisions [53].

In what follows we shall use sequences of MSL EOSs generated by varying L with a
variety of constraints on J : the sequence generated keeping J fixed will be labelled, e.g.,
‘J35’; the sequence generated by fixing the low density PNM EOS will be labelled the
‘PNM’ sequence; and the sequence generated by fixing S(0.1fm�3) = 26 MeV will be
labelled the ‘S0.1’ sequence. The model correlations in the right panel of Fig. 2 overlap in
the region 25<L<70 MeV, in line with the most recent experimental results. By combining
the MSL ‘PNM’ constraint with the requirement that 25<J<35 MeV and L>25MeV we
obtain a region in the J-L plane which we shall refer to as our ‘baseline’ region.

2.3. Correlations with neutron star properties

Some useful correlations of symmetry energy parameters with basic neutron star properties
have been established, which we review here; more details can be found in the following
references: [11, 70, 72, 80, 81]

• The pressure of neutron star matter in beta-equilibrium at n0 including the electron
contribution can be approximated [11, 81]

PNS(n0) ⇤
n0

3
L+ 0.048n0

�
J

30

⇥3�
J � 4

3
L

⇥
, (7)

where the second term provides a correction of only 2-3% for L = 25 MeV, rising to 10-
20% for L = 115 MeV, with J over the range 25 - 35 MeV. At densities slightly above or
below this, extra terms are introduced, but the leading order will remain the one proportional
to L alone.
• The radius of a neutron star is found to correlate with the pressure at a fiducial density

•  Famous	  correla,on	  between	  fiducial	  pressure	  P	  and	  NS	  radius	  R	  
•  Sca>er	  of	  order	  1km	  due	  largely	  to	  differences	  	  super	  satura,on	  symmetry	  energy	  behavior	  
•  Differences	  from	  different	  parameteriza,ons	  within	  same	  EDF,	  different	  EDFs;	  would	  like	  to	  

disentangle	  
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•  Skyrme-‐Hartree-‐Fock	  (SHF)	  model	  of	  nuclear	  ma>er:	  

-‐9	  parameters	  

-‐2	  purely	  isovector	  parameters:	  

•  Rela,vis,c	  Mean	  Field	  (RMF)	  model	  of	  nuclear	  ma>er:	  

-‐7	  parameters	  

-‐2	  purely	  isovector	  parameters	  

,	  

,	  
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satura,on	  and	  high	  density	  symmetry	  energy	  uncertainty	  

•  Take	  2	  reference	  RMF	  models:	  NL3,	  IU-‐FSU	  
•  Create	  2	  reference	  Skyrme	  models	  with	  iden,cal	  satura,on	  NM	  proper,es:	  SkNL3,	  SkIU-‐FSU	  

(by	  wri,ng	  Skyrme	  parameters	  in	  terms	  of	  NM	  parameters	  –	  	  
Chen	  et	  al	  PRC80,	  014322	  (2009);	  PRC82,	  024321	  (2010))	  

•  Adjust	  ρ0	  and	  E0	  in	  SHF	  models	  to	  reproduce	  double	  magic	  nuclei	  BE,	  rch	  

•  Re-‐fit	  the	  2	  purely	  isovector	  parameters	  in	  all	  models	  to	  the	  results	  of	  microscopic	  
calcula,ons	  

Model	  parameters:	  

(numerical	  “experimental”	  data:	  
:	  

Akmal	  et	  al	  PRC58,	  1802	  (1998)	  
Schwenk	  and	  Pethick	  PRL79,	  160401	  (2005)	  
Gandolfi	  et	  al	  PRC79,	  054005	  (2009)	  
Hebeler	  and	  Schwenk,	  PRC82,	  014314	  (2010))	  



	  Prepara,on	  of	  Skyrme	  and	  RMF	  EOSs	  to	  systema,cally	  explore	  
satura,on	  and	  high	  density	  symmetry	  energy	  uncertainty	  

PURE	  NEUTRON	  MATTER	  FITS:	  BEFORE	  AND	  AFTER	  

Fa>oyev,	  Newton,	  Li,	  PRC86,	  025804	  
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RESULTING	  1-‐σ	  CONFIDENCE	  ELLIPSES:	  SYMMETRY	  ENERGY	  PARAMETERS	  

Experiment:	   e.g.	  Dutra	  et	  al,	  PRC85,	  035201	  (2012)	  

Fa>oyev,	  Newton,	  Li,	  PRC86,	  025804	  



	  Prepara,on	  of	  Skyrme	  and	  RMF	  EOSs	  to	  systema,cally	  explore	  
satura,on	  and	  high	  density	  symmetry	  energy	  uncertainty	  

Fa>oyev,	  Newton,	  Li,	  PRC86,	  025804	  

•  When	  constrained	  by	  PNM	  calcula,ons,	  RMF	  models	  are	  systema,cally	  s,ffer	  at	  high	  density	  
than	  SHF	  models.	  



	  Tidal	  polarizability	  and	  Love	  number:	  sensi,vity	  to	  high-‐ρ	  symm.	  energy	  

Reference	  models:	  

Fa>oyev,	  Carvajal,	  Newton,	  Li,	  PRC87,	  15806	  (2013)	  



	  Tidal	  polarizability	  and	  Love	  number:	  sensi,vity	  to	  high-‐ρ	  symm.	  energy	  

•  Varia,on	  of	  satura,on	  density	  proper,es/high	  density	  SNM	  
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	  Tidal	  polarizability	  and	  Love	  number:	  sensi,vity	  to	  high-‐ρ	  symm.	  energy	  

•  Detector	  sensi,vi,es	  assuming	  	  
Op,mally	  oriented,	  equal	  mass	  binary	  	  
at	  D=100	  Mpc	  
-‐  Damour,	  Nagar,	  PRD81,	  084016	  (2010)	  
-‐  Damour,	  Nagar,	  Villain,	  PRD85,	  123007	  (2012)	  

Hinderer	  et	  al,	  PRD	  81,	  123016	  (2010)	  	  

•  At	  1.4MSUN,	  high	  density	  behavior	  of	  	  
symmetry	  energy	  at	  limit	  of	  AdvLIGOs	  	  
ability	  to	  constrain	  

Fa>oyev,	  Carvajal,	  Newton,	  Li,	  PRC87,	  15806	  (2013)	  



	  
	  
Qij	  

a	  

•  Tidal	  field	  Eij	  resonates	  low	  frequency	  
g-‐modes,	  iner,al	  modes	  ≈100Hz	  
	  
	  
•  Resul,ng	  energy	  transfer	  appears	  	  
as	  phase	  shio	  in	  gravita,onal	  waveform	  
•  Es,mated	  to	  produce	  negligible	  phase	  
shio	  dN	  <	  0.1,	  but	  only	  es,mated	  for	  	  
R=10km	  
•  But…	  
•  Radius/symmetry	  energy	  measurements	  
determine	  whether	  we	  should	  worry	  

	  

Dynamical	  ,des	  I	  

Lai,	  D.,	  MNRAS	  270,	  (1994)	  
Ho,	  W.C.G.,	  Lai,	  D.,	  MNRAS	  308	  (1999)	  
Lai,	  D.,	  Wu,	  Y.,	  PRD	  74,	  024007	  (2006)	  
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and the time at which the i-mode resonance occurs, we
plot the i-mode and gravitational wave frequency versus
time until (PN) coalescence, tc � t = 3tgw/8 (see e.g.
[30]), in Figure 2. The dashed lines trace the leading
order frequency evolution for a given chirp mass M, go-
ing from left to right. When the dashed line intersects
a colored column, it indicates the time and frequency at
which resonance occurs. From this set of EOSs and M,
a wide range of timescale are possible, from . 0.1 s up to
⇡ 20 s before merger. Also plotted as horizontal dotted
lines are the observed precursor times reported in [5].
Although this comparison assumes that the main flare
is nearly coincident with the binary coalescence, certain
constraints can already be inferred. The relatively high
frequency of the i-mode for the SLy4 EOS means that
the resonance only occurs at late times, close to merger.
Only if M . 1M� can such a model give timescales sim-
ilar to the shortest precursors and the longer precursors
may be especially di�cult for this model to replicate.
Other EOS models, such as Gs, Rs, SkI6, and SkO, are
largely consistent with the timescale of precursors, but as
a larger sample of precursor observations are made, dia-
grams such as this will be useful for constraining EOSs.

A binary with unequal mass NSs may excite two pre-
cursor flares separated by a small time delay, due to the
slight di↵erence in the i-mode frequency. However, the
two precursors (13 s, 0.55 s) observed in GRB 090510,
are too far separated to both be explained by our reso-
nant shattering model of precursors, using two NSs with
the same EOS. The 0.55 s flare may alternatively be ev-
idence of direct crust cracking [10] and a delayed main
GRB burst, the formation of a hyper-massive magnetar
before collapse into a black hole [31], or some other flare
mechanism.

Discussion. We explored the resonant excitation by
tides of a mode that is concentrated at the crust/core
boundary of NSs. We demonstrated that the resonance
occurs between ⇠ 0.1 � 20 s prior to merger in NS-NS
or NH-NS binaries. Further work remains to be done
exploring the details of this model, including the e↵ects
of damping on the mode excitation, the e↵ect of more
realistic NS structure, and the detailed physics of the
magnetospheric emission. However, we have shown that
the energetics of the release of mode and elastic energy
and the timescale at which the resonance occurs are sug-
gestive of the precursors of sGRBS. Using this theoretical
framework we demonstrated that interesting constraints
can be placed on the NS crust EOS with comparisons to
precursor observations.

The direct phase change of the gravitational wave-
form due to the resonant excitation of the mode, �� ⇠
(tgwEb

)/(t
orbit

E

orbit

) ⇠ 10�3 rad, is too small to be di-
rectly measured for signal to noise (SNR) <⇠ 1000. How-
ever, coincident timing between the �-ray burst detectors
and the GW detector would allow precise determination
of the mode frequency, coalescence time, main burst de-
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FIG. 2: The time until PN coalescence (tc � t) as a function
of gravitational wave frequency. The dashed lines show the
frequency evolution of inspiraling binaries for di↵erent chirp
masses M as labeled in units of M�. A given binary moves
from left to right in time. The colored columns show the
resonance frequencies f

mode

= f
gw

of a set of crust EOSs
from [15], over a neutron star mass range of 1.2M� (higher
frequency) to 1.7M� (lower frequency). We take 1.2M� as the
smallest plausible companion mass, giving an upper bound on
the precursor times for each EOS. NS-NS systems will have
chirp masses of 1.0 � 1.5M�, and NS-BH systems with 10 �
20M� BH have chirp masses of 2.7 � 4.5M�. The precursor
times for the GRBs reported in [5] are plotted as horizontal
dotted lines.

lay time, and chirp mass. With parameter extraction
from the GW inspiral at the detection threshold with
SNR ⇠ 10, the dominant error in determining the res-
onant frequency is due to the uncertainty in the timing
of the precursor flare, which is of order the precursor
duration. This implies that the mode frequency can be
determined to fractional accuracy �f/f ⇠ 0.1 s/t

gw

⇠
2% (M/1.2)5/3f8/3

100

. Such a measurement would allow us
to tightly constrain the NS physics and parameters that
determine the mode frequency. This is complementary
to the constraints given by GW coalescence measurement
alone, which are sensitive primarily to the core EOS (e.g.
[32, 33]).

Resonant shattering precursor flares are likely to be
fairly isotropic, and thus may be observable even for
sGRBs where the main flare is beamed away from the
Earth. Such flares may also be a source of electromag-
netic emission for higher mass ratio, lower spin NS-BH
mergers where the neutron star does not disrupt to pro-
duce a torus and main sGRB flare [34, 35].
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Dynamical	  ,des	  II:	  Crust	  sha>ering	  -‐	  symmetry	  energy	  constraints?	  

•  NS-‐NS	  mergers	  strong	  candidates	  for	  sGRBs	  
•  Precursor	  flares	  observed	  1-‐10s	  before	  4	  GRBs	  
•  Possible	  interpreta,on:	  crust	  sha>ering	  by	  ,dal	  excita,on	  of	  crustal	  interface	  mode	  	  
≈100Hz	  (Tsang	  et	  al	  PRL108,	  2012)	  

L	  =	  45	  MeV	  L=95	  MeV	  



Summary	  

•  Explored	  sensi,vity	  of	  ,dal	  polarizability	  to	  high	  density	  symmetry	  energy	  
•  Sample	  models:	  RMFs/Skyrmes	  with	  same	  satura,on	  proper,es,	  fit	  to	  PNM	  
•  RMFs	  give	  systema,cally	  s,ffer	  symmetry	  energy	  at	  high	  density	  

•  	  High	  density	  symmetry	  energy	  behavior	  of	  models	  can	  be	  dis,nguished	  (just)	  by	  	  
	  Adv.	  LIGO	  

•  Tidal	  field/g-‐mode	  resonance:	  change	  in	  GW	  waveform	  assumed	  negligible,	  but	  symmetry	  	  
	  energy/radius	  measurements	  needed	  to	  bolster	  confidence	  

•  Tidal	  field/crustal	  interface	  mode	  resonance	  could	  sha>er	  crust	  
•  EM	  signature:	  precursor	  flares	  to	  sGRBs?	  
•  If	  so,	  favors	  mid-‐high	  satura,on	  s,ffness	  


