
Tidal	
  interac,ons	
  during	
  neutron	
  
star	
  mergers:	
  symmetry	
  energy	
  

considera,ons	
  
W.G.	
  Newton,	
  J.	
  Hooker,	
  F.	
  Fa>oyev,	
  J.	
  Carvajal,	
  Bao-­‐An	
  Li	
  

Texas	
  A&M-­‐Commerce	
  
	
  

NuSYM13;	
  July	
  23	
  



Outline	
  

•  Mo,va,on:	
  Symmetry	
  energy	
  at	
  satura,on	
  density	
  and	
  higher	
  
	
  
•  NS-­‐NS	
  ,dal	
  interac,ons	
  
	
  
•  Equilibrium	
  ,des	
  

•  Tidal	
  polarizability/Love	
  number	
  
•  Prepara,on	
  of	
  Nuclear	
  Ma>er	
  models	
  
•  Results	
  
	
  

•  Dynamical	
  Tides	
  I:	
  resonant	
  excita,on	
  of	
  g-­‐modes	
  
	
  
•  Dynamical	
  Tides	
  II:	
  resonant	
  excita,on	
  of	
  crust	
  modes;	
  crust	
  sha>ering	
  
	
  
•  Summary	
  



Symmetry	
  energy	
  
Neutron Stars

William G. Newton

February 29, 2012

1 Introduction

B

A
= av � aa(1� 2Z/A)2 = av � aa�

2 (1)

E(n, �) = E0(n) + S(n)�2 + ... (2)

S(n) = J + L⇥+
Ksym

2
⇥2 (3)

1

Neutron Stars

William G. Newton

February 29, 2012

1 Introduction

B

A
= av � aa(1� 2Z/A)2 = av � aa�

2 (1)

E(n, �) = E0(n) + S(n)�2 + ... (2)

S(n) = J + L⇥+
Ksym

2
⇥2 (3)

1

III. THE EQUATION OF STATE OF UNIFORM NUCLEAR MATTER

Useful parameters characterizing the EoS of isospin asymmetric nuclear matter around

SNM (proton fraction x = 0.5; � = 0) and the saturation density of SNM ns can be derived

by expanding E(n, x) in a power series in the isospin asymmetry � = 1� 2x and the density

parameter ⇥ = n�n0
3n0

E(n, x) = E0(n) + S(n)�2 + ... (9)

E0(n) = E0 +
1
2K0⇥

2 + ... (10)

S(n) = J + L⇥+ 1
2Ksym⇥

2 + ... (11)

EPNM(n) ⇥ E0(n) + S(n) (12)

E0(n) = E(n, 0.5) is the binding energy per nucleon of SNM and S(n) = 1
2⌃

2E(n, x)/⌃�2x=0.5

is the nuclear symmetry energy. K0 is the incompressibility of SNM at saturation density.

J = S(n0), L = ⌃S(n)/⌃⇥|n=n0 and Ksym are the value of the symmetry energy, its slope

and its curvature at saturation density. In particular, the pressure of pure neutron matter at

sub-saturation densities, which plays a large role in determining the equilibrium composition

of the crust, can be expressed as

PPNM =
n2

3n0
[L+ (K0 +Ksym)⇥+ ...]. (13)

to the leading two orders.

Throughout most of this paper we will mainly use the modified Skyrme-like (MSL) pa-

rameterization of the nuclear matter EoS E(n, �) [59] (see appendix A) as our description

of uniform nuclear matter as a function of density and isospin asymmetry. The MSL model

has the same number of free parameters as the Skyrme description of uniform nuclear mat-

ter; the di�erence is that the MSL parameters can be analytically related to the properties

of uniform nuclear matter at saturation density, allowing a smooth variation of, e.g., the

symmetry energy at saturation J and its slope L, while holding fixed the isospin symmetric

part of the EoS. For comparison, we will also use a similar phenomenological EoS whose

form was originally written down by Bludman and Dover [60] (which we will refer to as BD,

see also appendix A), which was later modified and used to study finite nuclei and inner

crust composition by Oyamatsu and Iida (OI) [10, 61], and a selection of Skyrme EoSs [62]

whose basic properties are given in Table 1. The BD model has two fewer free parameters
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nucleon interactions as they are manifested in a many-nucleon context. A useful concept
that bridges the gap between ab initio nucleon-nucleon calculations, nuclear experimental
observables, and neutron star matter is that of uniform nuclear matter (NM). This is an
idealized system, homogeneous and infinite in extent, of neutrons and protons interacting
solely via the strong force. The energy per particle of such a system at a density ⇥ and
proton fraction x, E(⇥, x), is referred to as the nuclear matter equation of state (NM EOS).
In the regions of the neutron star core where protons and neutrons exist, the NM EOS
can be combined with the electron energy, and under conditions of charge neutrality and
beta-equilibrium gives an EOS for the core. In the inner crust, the NM EOS can be used
to describe the dripped neutrons (x = 0) and the bulk matter in the nuclear clusters. A
consistent model for the EOS of crust and core necessarily uses a unique NM EOS, and one
should expect parameters characteristic of a given NM EOS to correlate with both crust and
core properties.

Nuclear matter with equal numbers of neutrons and protons (x = 0.5) is referred to as
symmetric nuclear matter (SNM); nuclear matter with x = 0.0 is naturally referred to as
pure neutron matter (PNM). Nuclei on Earth contain closely symmetric nuclear matter at
densities close to nuclear saturation density ⇥0 ⇧ 2.7 ⇥ 1014 g cm�3 ⇤ 0.16 fm�3 = n0,
where we use n to refer to baryon number density. Thus experiment has constrained the
properties of E(⌅ n0,⌅ 0.5) to within relatively tight ranges, but the properties of PNM
remain uncertain from an experimental standpoint. In the past decade, much experimen-
tal activity has been devoted to extending our knowledge of nuclear interactions to more
neutron-rich systems and to higher and lower densities. Although we cannot produce pure
neutron matter in the laboratory, we can produce matter with proton fractions as low as
x ⇧ 0.3 in certain neutron rich isotopes and in the products of heavy ion collisions. This
allows us to obtain information on how E(⌅ n0, x) changes as x decreases.

By expanding E(n, x) about x = 0.5 using the isospin asymmetry variable � = 1�2x,
we can define a useful quantity called the symmetry energy S(n),

E(n, �) = E0(n) + S(n)�2 + ...; S(n) =
1

2

⌥2E(n, �)

⌥�2

����
�=0

, (1)

which encodes the change in the energy per particle of NM as one moves away from isospin
symmetry. This allows extrapolation to the highly isospin asymmetric conditions in neutron
stars. The simplest such extrapolation, referred to as the parabolic approximation (PA),
truncates the expansion to second order, giving

EPNM(n) ⇤ E(n, � = 1) ⇧ E0(n) + S(n) (2)

for the PNM EOS. Expanding the symmetry energy about ⇤ = 0 where ⇤ = n�n0
3n0

we
obtain

S(n) = J + L⇤+ 1
2Ksym⇤

2 + ..., (3)

where J , L and Ksym are the symmetry energy, its slope and its curvature at saturation
density.

Since neutron star matter contains a low fraction of protons, many inner crust and global
stellar properties are sensitive to the symmetry energy parameters J ,L, etc. To give a sim-
ple example, the pressure of PNM at saturation density is given by PPNM(n0)=n0L/3. The

K(α) = K0 + Kasyα
2 (2.12)

where K0 is the incompressibility of symmetric nuclear matter at the nuclear matter saturation
density ρ0. TheKasy in the isospin-dependent part [42]

Kasy ≈ Ksym − 6L (2.13)

characterizes the density dependence of the nuclear symmetry energy. In principle, the infor-
mation on Kasy can be extracted experimentally by measuring the giant monopole resonance
(GMR) of neutron-rich nuclei. Earlier attempts to extract the value of Kasy from experimental
GMR data resulted in widely different values. For example, a value of Kasy = −320 ± 180
MeV was obtained in Ref. [228] from a study of the systematics of GMR in the isotopic chains
of Sn and Sm while the K0 was found to be 300 ± 25 MeV, in contrast with the commonly
accepted value of 230 ± 10 MeV. A subsequent systematic study of the GMR of finite nuclei
leads to a constraint of −566 ± 1350 < Kasy < 139 ± 1617 MeV, depending on the mass
region of nuclei and the number of parameters used in parameterizing the incompressibility of
finite nuclei [229]. The large uncertainties in the extracted Kasy thus does not allow one to dis-
tinguish the different nuclear symmetry energies from theoretical models. Very recently, from
measurements of the isotopic dependence of GMR in the even-A Sn isotopes a more stringent
value ofKasy = −550±100MeV was obtained in Ref. [230]. This result is consistent with that
extracted from the analysis of the isospin diffusion data [56,71].

Fig. 8. (Color online) Left window: Density dependence of the nuclear symmetry energy Esym(ρ) from
SHFwith 21 sets of Skyrme interaction parameters [71]. Right window: Same as left panel from the RMF
model for the parameter sets NL1, NL2, NL3, NL-SH, TM1, PK1, FSU-Gold, HA, NLρ, and NLρδ in the
nonlinear RMF model (solid curves); TW99, DD-ME1, DD-ME2, PKDD, DD, DD-F, and DDRH-corr
in the density-dependent RMF model (dashed curves); and PC-F1, PC-F2, PC-F3, PC-F4, PC-LA, and
FKVW in the point-coupling RMF model (dotted curves) [211].

The symmetry energies at normal nuclear matter density from various theoretical models are
usually tuned to that determined from the empirical liquid-dropmass formula, which has a value
of Esym(ρ0) around 30 MeV [8,9]. For example, in the non-relativistic SHF approach [72], the
predicted values forEsym(ρ0) are between 26 and 35MeV depending on the nuclear interactions
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nucleon interactions as they are manifested in a many-nucleon context. A useful concept
that bridges the gap between ab initio nucleon-nucleon calculations, nuclear experimental
observables, and neutron star matter is that of uniform nuclear matter (NM). This is an
idealized system, homogeneous and infinite in extent, of neutrons and protons interacting
solely via the strong force. The energy per particle of such a system at a density ⇥ and
proton fraction x, E(⇥, x), is referred to as the nuclear matter equation of state (NM EOS).
In the regions of the neutron star core where protons and neutrons exist, the NM EOS
can be combined with the electron energy, and under conditions of charge neutrality and
beta-equilibrium gives an EOS for the core. In the inner crust, the NM EOS can be used
to describe the dripped neutrons (x = 0) and the bulk matter in the nuclear clusters. A
consistent model for the EOS of crust and core necessarily uses a unique NM EOS, and one
should expect parameters characteristic of a given NM EOS to correlate with both crust and
core properties.

Nuclear matter with equal numbers of neutrons and protons (x = 0.5) is referred to as
symmetric nuclear matter (SNM); nuclear matter with x = 0.0 is naturally referred to as
pure neutron matter (PNM). Nuclei on Earth contain closely symmetric nuclear matter at
densities close to nuclear saturation density ⇥0 ⇧ 2.7 ⇥ 1014 g cm�3 ⇤ 0.16 fm�3 = n0,
where we use n to refer to baryon number density. Thus experiment has constrained the
properties of E(⌅ n0,⌅ 0.5) to within relatively tight ranges, but the properties of PNM
remain uncertain from an experimental standpoint. In the past decade, much experimen-
tal activity has been devoted to extending our knowledge of nuclear interactions to more
neutron-rich systems and to higher and lower densities. Although we cannot produce pure
neutron matter in the laboratory, we can produce matter with proton fractions as low as
x ⇧ 0.3 in certain neutron rich isotopes and in the products of heavy ion collisions. This
allows us to obtain information on how E(⌅ n0, x) changes as x decreases.

By expanding E(n, x) about x = 0.5 using the isospin asymmetry variable � = 1�2x,
we can define a useful quantity called the symmetry energy S(n),

E(n, �) = E0(n) + S(n)�2 + ...; S(n) =
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which encodes the change in the energy per particle of NM as one moves away from isospin
symmetry. This allows extrapolation to the highly isospin asymmetric conditions in neutron
stars. The simplest such extrapolation, referred to as the parabolic approximation (PA),
truncates the expansion to second order, giving
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3n0
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obtain

S(n) = J + L⇤+ 1
2Ksym⇤
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where J , L and Ksym are the symmetry energy, its slope and its curvature at saturation
density.

Since neutron star matter contains a low fraction of protons, many inner crust and global
stellar properties are sensitive to the symmetry energy parameters J ,L, etc. To give a sim-
ple example, the pressure of PNM at saturation density is given by PPNM(n0)=n0L/3. The

K(α) = K0 + Kasyα
2 (2.12)

where K0 is the incompressibility of symmetric nuclear matter at the nuclear matter saturation
density ρ0. TheKasy in the isospin-dependent part [42]

Kasy ≈ Ksym − 6L (2.13)

characterizes the density dependence of the nuclear symmetry energy. In principle, the infor-
mation on Kasy can be extracted experimentally by measuring the giant monopole resonance
(GMR) of neutron-rich nuclei. Earlier attempts to extract the value of Kasy from experimental
GMR data resulted in widely different values. For example, a value of Kasy = −320 ± 180
MeV was obtained in Ref. [228] from a study of the systematics of GMR in the isotopic chains
of Sn and Sm while the K0 was found to be 300 ± 25 MeV, in contrast with the commonly
accepted value of 230 ± 10 MeV. A subsequent systematic study of the GMR of finite nuclei
leads to a constraint of −566 ± 1350 < Kasy < 139 ± 1617 MeV, depending on the mass
region of nuclei and the number of parameters used in parameterizing the incompressibility of
finite nuclei [229]. The large uncertainties in the extracted Kasy thus does not allow one to dis-
tinguish the different nuclear symmetry energies from theoretical models. Very recently, from
measurements of the isotopic dependence of GMR in the even-A Sn isotopes a more stringent
value ofKasy = −550±100MeV was obtained in Ref. [230]. This result is consistent with that
extracted from the analysis of the isospin diffusion data [56,71].

Fig. 8. (Color online) Left window: Density dependence of the nuclear symmetry energy Esym(ρ) from
SHFwith 21 sets of Skyrme interaction parameters [71]. Right window: Same as left panel from the RMF
model for the parameter sets NL1, NL2, NL3, NL-SH, TM1, PK1, FSU-Gold, HA, NLρ, and NLρδ in the
nonlinear RMF model (solid curves); TW99, DD-ME1, DD-ME2, PKDD, DD, DD-F, and DDRH-corr
in the density-dependent RMF model (dashed curves); and PC-F1, PC-F2, PC-F3, PC-F4, PC-LA, and
FKVW in the point-coupling RMF model (dotted curves) [211].

The symmetry energies at normal nuclear matter density from various theoretical models are
usually tuned to that determined from the empirical liquid-dropmass formula, which has a value
of Esym(ρ0) around 30 MeV [8,9]. For example, in the non-relativistic SHF approach [72], the
predicted values forEsym(ρ0) are between 26 and 35MeV depending on the nuclear interactions
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•  What	
  constraints	
  can	
  we	
  add	
  from	
  astrophysical	
  observa,on?	
  
•  How	
  can	
  experimental	
  constraints	
  inform	
  our	
  interpreta,on	
  of	
  observa,ons?	
  



Not	
  full	
  story:	
  Satura,on	
  constraints	
  on	
  J,L	
  not	
  necessarily	
  constraining	
  
at	
  high	
  densi,es	
  

•  Can	
  we	
  find	
  astrophysical	
  observables	
  that	
  are	
  sensi,ve	
  to	
  high	
  density	
  EOS/symmetry	
  	
  
	
  energy?	
  (e.g.	
  neutrino	
  signal	
  from	
  PNS	
  -­‐	
  Roberts	
  et	
  al	
  PRL108	
  (2012))	
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NS-­‐NS	
  Mergers	
  



	
  
	
  
Qij	
  

a	
  

•  Tidal	
  field	
  Eij	
  drives	
  f-­‐mode	
  (quadrupole	
  	
  
deforma,on	
  Qij)	
  
•  Resul,ng	
  energy	
  transfer	
  appears	
  	
  
as	
  phase	
  shio	
  in	
  gravita,onal	
  waveform	
  
•  Detectable	
  cleanly	
  f≈100-­‐400Hz	
  
•  Phase	
  shio	
  depends	
  on	
  one	
  parameter:	
  
,dal	
  polarizability	
  λ	
  (or	
  Love	
  number	
  k2)	
  

Equilibrium	
  ,des	
  

M,R	
  
M’	
  

Flanagan,	
  Hinderer,	
  PRD77,	
  021502	
  (2008)	
  
Hinderer	
  et	
  al,	
  PRD81,	
  123016	
  (2010)	
  



	
  Tidal	
  polarizability	
  and	
  Love	
  number	
  

•  Tidal	
  polarizability	
  λ	
  func,on	
  of	
  global	
  NS	
  proper,es	
  (M,R)	
  and	
  internal	
  structure	
  (func,on	
  
yR	
  obtained	
  by	
  integra,on	
  out	
  from	
  center	
  of	
  star)	
  
•  Clearly	
  discriminates	
  between	
  NSs	
  and	
  Strange	
  stars	
  	
  

	
   	
   	
   	
   	
   	
   	
   	
  -­‐	
  Postnikov,Prakash,Lakmer,	
  PRD82,	
  024012	
  (2010)	
  
•  Sensi,vity	
  to	
  high	
  density	
  symmetry	
  energy?	
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8 W.G. Newton

for the MSL EOS are displayed in the right panel of Fig. 3. Doing so naturally introduces
correlation between J and L; in the right panel of Fig. 2 we display the correlation obtained
in this way for the MSL model. It is fit by J = 20.53 + 0.207L. For reference, the correla-
tions obtained directly from the PNM calculations of HS and GCR, using the PA (Eq. (2))
with E0 = �16 MeV to obtain J from EPNM(n0), are depicted in Fig. 3; although offset
slightly from the MSL results, their slopes are similar. A similar correlation is obtained
from the Hugenholtz-Van-Hove (HVH) theorem which predicts a relation between J and L
whose uncertainty can be related to global nucleon optical potentials [63]

One experimental probe of the symmetry energy is the measurement of neutron skins
of nuclei. This probes the symmetry energy at densities around n = 0.1fm�3; thus many
models fix the symmetry energy at this density. In the right panel of Fig. 3 we show the
MSL PNM EOSs constrained by S(0.1fm�3) = 26 MeV; varying L then produces a steeper
correlation with J , also shown in the right panel of Fig. 2; J = 29.0 + 0.1L. It is worth
noting that increasing the density at which one fixes the symmetry energy in a given model,
increases the slope in the J-L plane.

Similar correlations are obtained from two relativistic mean field models [70, 71] and
from a best fit to a wide selection of model predictions of J and L [72], also shown in the
left panel of Fig. 2. Finally we also show correlations that emerge from nuclear mass fits
[64, 65] and analysis of data from heavy ion collisions [53].

In what follows we shall use sequences of MSL EOSs generated by varying L with a
variety of constraints on J : the sequence generated keeping J fixed will be labelled, e.g.,
‘J35’; the sequence generated by fixing the low density PNM EOS will be labelled the
‘PNM’ sequence; and the sequence generated by fixing S(0.1fm�3) = 26 MeV will be
labelled the ‘S0.1’ sequence. The model correlations in the right panel of Fig. 2 overlap in
the region 25<L<70 MeV, in line with the most recent experimental results. By combining
the MSL ‘PNM’ constraint with the requirement that 25<J<35 MeV and L>25MeV we
obtain a region in the J-L plane which we shall refer to as our ‘baseline’ region.

2.3. Correlations with neutron star properties

Some useful correlations of symmetry energy parameters with basic neutron star properties
have been established, which we review here; more details can be found in the following
references: [11, 70, 72, 80, 81]

• The pressure of neutron star matter in beta-equilibrium at n0 including the electron
contribution can be approximated [11, 81]

PNS(n0) ⇤
n0

3
L+ 0.048n0

�
J

30

⇥3�
J � 4

3
L

⇥
, (7)

where the second term provides a correction of only 2-3% for L = 25 MeV, rising to 10-
20% for L = 115 MeV, with J over the range 25 - 35 MeV. At densities slightly above or
below this, extra terms are introduced, but the leading order will remain the one proportional
to L alone.
• The radius of a neutron star is found to correlate with the pressure at a fiducial density

•  Famous	
  correla,on	
  between	
  fiducial	
  pressure	
  P	
  and	
  NS	
  radius	
  R	
  
•  Sca>er	
  of	
  order	
  1km	
  due	
  largely	
  to	
  differences	
  	
  super	
  satura,on	
  symmetry	
  energy	
  behavior	
  
•  Differences	
  from	
  different	
  parameteriza,ons	
  within	
  same	
  EDF,	
  different	
  EDFs;	
  would	
  like	
  to	
  

disentangle	
  



	
  Prepara,on	
  of	
  Skyrme	
  and	
  RMF	
  EOSs	
  to	
  systema,cally	
  explore	
  
satura,on	
  and	
  high	
  density	
  symmetry	
  energy	
  uncertainty	
  

•  Skyrme-­‐Hartree-­‐Fock	
  (SHF)	
  model	
  of	
  nuclear	
  ma>er:	
  

-­‐9	
  parameters	
  

-­‐2	
  purely	
  isovector	
  parameters:	
  

•  Rela,vis,c	
  Mean	
  Field	
  (RMF)	
  model	
  of	
  nuclear	
  ma>er:	
  

-­‐7	
  parameters	
  

-­‐2	
  purely	
  isovector	
  parameters	
  

,	
  

,	
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•  Take	
  2	
  reference	
  RMF	
  models:	
  NL3,	
  IU-­‐FSU	
  
•  Create	
  2	
  reference	
  Skyrme	
  models	
  with	
  iden,cal	
  satura,on	
  NM	
  proper,es:	
  SkNL3,	
  SkIU-­‐FSU	
  

(by	
  wri,ng	
  Skyrme	
  parameters	
  in	
  terms	
  of	
  NM	
  parameters	
  –	
  	
  
Chen	
  et	
  al	
  PRC80,	
  014322	
  (2009);	
  PRC82,	
  024321	
  (2010))	
  

•  Adjust	
  ρ0	
  and	
  E0	
  in	
  SHF	
  models	
  to	
  reproduce	
  double	
  magic	
  nuclei	
  BE,	
  rch	
  

•  Re-­‐fit	
  the	
  2	
  purely	
  isovector	
  parameters	
  in	
  all	
  models	
  to	
  the	
  results	
  of	
  microscopic	
  
calcula,ons	
  

Model	
  parameters:	
  

(numerical	
  “experimental”	
  data:	
  
:	
  

Akmal	
  et	
  al	
  PRC58,	
  1802	
  (1998)	
  
Schwenk	
  and	
  Pethick	
  PRL79,	
  160401	
  (2005)	
  
Gandolfi	
  et	
  al	
  PRC79,	
  054005	
  (2009)	
  
Hebeler	
  and	
  Schwenk,	
  PRC82,	
  014314	
  (2010))	
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RESULTING	
  1-­‐σ	
  CONFIDENCE	
  ELLIPSES:	
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  ENERGY	
  PARAMETERS	
  

Experiment:	
   e.g.	
  Dutra	
  et	
  al,	
  PRC85,	
  035201	
  (2012)	
  

Fa>oyev,	
  Newton,	
  Li,	
  PRC86,	
  025804	
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Fa>oyev,	
  Newton,	
  Li,	
  PRC86,	
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•  When	
  constrained	
  by	
  PNM	
  calcula,ons,	
  RMF	
  models	
  are	
  systema,cally	
  s,ffer	
  at	
  high	
  density	
  
than	
  SHF	
  models.	
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Reference	
  models:	
  

Fa>oyev,	
  Carvajal,	
  Newton,	
  Li,	
  PRC87,	
  15806	
  (2013)	
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  Tidal	
  polarizability	
  and	
  Love	
  number:	
  sensi,vity	
  to	
  high-­‐ρ	
  symm.	
  energy	
  

•  Detector	
  sensi,vi,es	
  assuming	
  	
  
Op,mally	
  oriented,	
  equal	
  mass	
  binary	
  	
  
at	
  D=100	
  Mpc	
  
-­‐  Damour,	
  Nagar,	
  PRD81,	
  084016	
  (2010)	
  
-­‐  Damour,	
  Nagar,	
  Villain,	
  PRD85,	
  123007	
  (2012)	
  

Hinderer	
  et	
  al,	
  PRD	
  81,	
  123016	
  (2010)	
  	
  

•  At	
  1.4MSUN,	
  high	
  density	
  behavior	
  of	
  	
  
symmetry	
  energy	
  at	
  limit	
  of	
  AdvLIGOs	
  	
  
ability	
  to	
  constrain	
  

Fa>oyev,	
  Carvajal,	
  Newton,	
  Li,	
  PRC87,	
  15806	
  (2013)	
  



	
  
	
  
Qij	
  

a	
  

•  Tidal	
  field	
  Eij	
  resonates	
  low	
  frequency	
  
g-­‐modes,	
  iner,al	
  modes	
  ≈100Hz	
  
	
  
	
  
•  Resul,ng	
  energy	
  transfer	
  appears	
  	
  
as	
  phase	
  shio	
  in	
  gravita,onal	
  waveform	
  
•  Es,mated	
  to	
  produce	
  negligible	
  phase	
  
shio	
  dN	
  <	
  0.1,	
  but	
  only	
  es,mated	
  for	
  	
  
R=10km	
  
•  But…	
  
•  Radius/symmetry	
  energy	
  measurements	
  
determine	
  whether	
  we	
  should	
  worry	
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and the time at which the i-mode resonance occurs, we
plot the i-mode and gravitational wave frequency versus
time until (PN) coalescence, tc � t = 3tgw/8 (see e.g.
[30]), in Figure 2. The dashed lines trace the leading
order frequency evolution for a given chirp mass M, go-
ing from left to right. When the dashed line intersects
a colored column, it indicates the time and frequency at
which resonance occurs. From this set of EOSs and M,
a wide range of timescale are possible, from . 0.1 s up to
⇡ 20 s before merger. Also plotted as horizontal dotted
lines are the observed precursor times reported in [5].
Although this comparison assumes that the main flare
is nearly coincident with the binary coalescence, certain
constraints can already be inferred. The relatively high
frequency of the i-mode for the SLy4 EOS means that
the resonance only occurs at late times, close to merger.
Only if M . 1M� can such a model give timescales sim-
ilar to the shortest precursors and the longer precursors
may be especially di�cult for this model to replicate.
Other EOS models, such as Gs, Rs, SkI6, and SkO, are
largely consistent with the timescale of precursors, but as
a larger sample of precursor observations are made, dia-
grams such as this will be useful for constraining EOSs.

A binary with unequal mass NSs may excite two pre-
cursor flares separated by a small time delay, due to the
slight di↵erence in the i-mode frequency. However, the
two precursors (13 s, 0.55 s) observed in GRB 090510,
are too far separated to both be explained by our reso-
nant shattering model of precursors, using two NSs with
the same EOS. The 0.55 s flare may alternatively be ev-
idence of direct crust cracking [10] and a delayed main
GRB burst, the formation of a hyper-massive magnetar
before collapse into a black hole [31], or some other flare
mechanism.

Discussion. We explored the resonant excitation by
tides of a mode that is concentrated at the crust/core
boundary of NSs. We demonstrated that the resonance
occurs between ⇠ 0.1 � 20 s prior to merger in NS-NS
or NH-NS binaries. Further work remains to be done
exploring the details of this model, including the e↵ects
of damping on the mode excitation, the e↵ect of more
realistic NS structure, and the detailed physics of the
magnetospheric emission. However, we have shown that
the energetics of the release of mode and elastic energy
and the timescale at which the resonance occurs are sug-
gestive of the precursors of sGRBS. Using this theoretical
framework we demonstrated that interesting constraints
can be placed on the NS crust EOS with comparisons to
precursor observations.

The direct phase change of the gravitational wave-
form due to the resonant excitation of the mode, �� ⇠
(tgwEb

)/(t
orbit

E

orbit

) ⇠ 10�3 rad, is too small to be di-
rectly measured for signal to noise (SNR) <⇠ 1000. How-
ever, coincident timing between the �-ray burst detectors
and the GW detector would allow precise determination
of the mode frequency, coalescence time, main burst de-
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FIG. 2: The time until PN coalescence (tc � t) as a function
of gravitational wave frequency. The dashed lines show the
frequency evolution of inspiraling binaries for di↵erent chirp
masses M as labeled in units of M�. A given binary moves
from left to right in time. The colored columns show the
resonance frequencies f

mode

= f
gw

of a set of crust EOSs
from [15], over a neutron star mass range of 1.2M� (higher
frequency) to 1.7M� (lower frequency). We take 1.2M� as the
smallest plausible companion mass, giving an upper bound on
the precursor times for each EOS. NS-NS systems will have
chirp masses of 1.0 � 1.5M�, and NS-BH systems with 10 �
20M� BH have chirp masses of 2.7 � 4.5M�. The precursor
times for the GRBs reported in [5] are plotted as horizontal
dotted lines.

lay time, and chirp mass. With parameter extraction
from the GW inspiral at the detection threshold with
SNR ⇠ 10, the dominant error in determining the res-
onant frequency is due to the uncertainty in the timing
of the precursor flare, which is of order the precursor
duration. This implies that the mode frequency can be
determined to fractional accuracy �f/f ⇠ 0.1 s/t

gw

⇠
2% (M/1.2)5/3f8/3

100

. Such a measurement would allow us
to tightly constrain the NS physics and parameters that
determine the mode frequency. This is complementary
to the constraints given by GW coalescence measurement
alone, which are sensitive primarily to the core EOS (e.g.
[32, 33]).

Resonant shattering precursor flares are likely to be
fairly isotropic, and thus may be observable even for
sGRBs where the main flare is beamed away from the
Earth. Such flares may also be a source of electromag-
netic emission for higher mass ratio, lower spin NS-BH
mergers where the neutron star does not disrupt to pro-
duce a torus and main sGRB flare [34, 35].
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Dynamical	
  ,des	
  II:	
  Crust	
  sha>ering	
  -­‐	
  symmetry	
  energy	
  constraints?	
  

•  NS-­‐NS	
  mergers	
  strong	
  candidates	
  for	
  sGRBs	
  
•  Precursor	
  flares	
  observed	
  1-­‐10s	
  before	
  4	
  GRBs	
  
•  Possible	
  interpreta,on:	
  crust	
  sha>ering	
  by	
  ,dal	
  excita,on	
  of	
  crustal	
  interface	
  mode	
  	
  
≈100Hz	
  (Tsang	
  et	
  al	
  PRL108,	
  2012)	
  

L	
  =	
  45	
  MeV	
  L=95	
  MeV	
  



Summary	
  

•  Explored	
  sensi,vity	
  of	
  ,dal	
  polarizability	
  to	
  high	
  density	
  symmetry	
  energy	
  
•  Sample	
  models:	
  RMFs/Skyrmes	
  with	
  same	
  satura,on	
  proper,es,	
  fit	
  to	
  PNM	
  
•  RMFs	
  give	
  systema,cally	
  s,ffer	
  symmetry	
  energy	
  at	
  high	
  density	
  

•  	
  High	
  density	
  symmetry	
  energy	
  behavior	
  of	
  models	
  can	
  be	
  dis,nguished	
  (just)	
  by	
  	
  
	
  Adv.	
  LIGO	
  

•  Tidal	
  field/g-­‐mode	
  resonance:	
  change	
  in	
  GW	
  waveform	
  assumed	
  negligible,	
  but	
  symmetry	
  	
  
	
  energy/radius	
  measurements	
  needed	
  to	
  bolster	
  confidence	
  

•  Tidal	
  field/crustal	
  interface	
  mode	
  resonance	
  could	
  sha>er	
  crust	
  
•  EM	
  signature:	
  precursor	
  flares	
  to	
  sGRBs?	
  
•  If	
  so,	
  favors	
  mid-­‐high	
  satura,on	
  s,ffness	
  


