Using heavy-ion collisions to determine asymmetry dependence of nuclear energy and effective mass

Zbigniew Chajęcki

National Superconducting Cyclotron Laboratory Michigan State University

Outline

- Introduction

 EOS, symmetry energy

 Input from theory:
 - sensitivity to symmetry energy and effective mass
- Our experiment

 \circ n/p and t/³He (double-) ratios

- Theory vs data
 - o pBUU and ImQMD

EOS and Symmetry Energy

$$\mathbf{E/A} (\boldsymbol{\rho}, \boldsymbol{\delta}) = \mathbf{E/A} (\boldsymbol{\rho}, 0) + \delta^2 \cdot \mathbf{S}(\boldsymbol{\rho})$$
$$\delta = (\boldsymbol{\rho}_n - \boldsymbol{\rho}_p) / (\boldsymbol{\rho}_n + \boldsymbol{\rho}_p) = (\mathbf{N} - \mathbf{Z}) / \mathbf{A}$$

Both astrophysical and <u>laboratory</u> <u>observables</u> can constrain the EoS, $\epsilon(\rho,T,\delta)$ or P(ρ,T,δ) indirectly

- What are the observables?
- At what densities or asymmetries do these constraints apply?
- What are the accuracies or model dependencies of these constraints?

Reaction probes: isospin multiplets

Observables:

- Neutron vs. proton emission and flow
- Pion production
- Correlations
- Isospin transport ratios

n and **p** potentials have opposite signs and slightly different density dependence

Soft: repulsive (attractive) potential for neutrons (protons) enhances (suppresses) the neutron (proton) emission → <u>larger</u> double ratio

Stiff: the magnitude of the repulsive (attractive) potential for neutrons (protons)

→ <u>smaller</u> double ratio

2013

Reaction probes: isospin multiplets

100

0

δ=0.3

Li et al., PRL 78 (1997) 1644

 F_2

stiff

F

Observables:

- Neutron vs. proton emission and flow
- Pion production
- Correlations

2.5

2.0

1.0

0.5

0.0

Isospin transport ratios

Reaction probes: isospin multiplets

Observable

- Neutron vs. prote
- Pion production
- Correlations
- Isospin transport

Isospin Diffusion

Influence of effective mass

Influence of effective mass

ImQMD: Nucleon Effective Masses

S(ρ)=12.7(ρ/ρ_o)^{2/3} + 19(ρ/ρ_o)^{γ_i} + mean field in ImQMD05

ImQMD05_sky: incorporate Skyrme interactions

Skyrme	S ₀ (MeV)	L (MeV)	m _n */m _n	m _p */m _p	Δm_{n-p}
SLy4	32	46	0.68	0.71	-0.03
SkM*	30	46	0.82	0.76	+0.06

ImQMD05_sky: incorporate Skyrme interactions Y. Zhang (2013) Private Communication Tsang (2013) Private Communication

ecki - NuSYM 2013

 $E_{e.m.}(MeV)$

Experiment

¹¹²Sn+¹¹²Sn and ¹²⁴Sn+¹²⁴Sn at 50 and 120 MeV/A

measure emitted neutrons, protons and light clusters from central collisions

$$\mathbf{E/A} (\boldsymbol{\rho}, \boldsymbol{\delta}) = \mathbf{E/A} (\boldsymbol{\rho}, 0) + \delta^2 \cdot \mathbf{S}(\boldsymbol{\rho})$$
$$\delta = (\boldsymbol{\rho}_n - \boldsymbol{\rho}_p) / (\boldsymbol{\rho}_n + \boldsymbol{\rho}_p) = (\mathbf{N} - \mathbf{Z}) / \mathbf{A}$$

¹¹²Sn: δ = 0.108

¹²⁴Sn: δ = 0.194

e09042 NSCL: PhD Thesis Experiment Coupland & Youngs

Z.Chajecki - NuSYM 2013

Experiment

5 detector systems:

- Neutron wall
- Miniball
- LASSA Si Array
- Proton Vetos
- Forward Array

Our observables

Caveat:

- neutron measurements have known efficiency ~10%
- Effects we are going to measure are often of the same order

Advantages:

- reduce systematic uncertainties
- reduce differences in energy calibration
- Coulomb "cancels out"

60

80

100

Our experiment: particle ratios

Transport models

- BUU Boltzmann-Uehling-Uhlenbeck
- QMD Quantum Molecular Dynamics
- Simulates the time-dependent evolution of the collision

Main ingredients

- Nucleons in mean-field
- Symmetry energy
- In-medium cross section
- Momentum (in-) dependent nuclear interaction
- Effective mass
- Cluster production (A≤3)

We don't intend to fit our experimental data with theory. Instead, we want to look for systematics in theory that may help us understanding the experimental data

ImQMD – effective mass

ImQMD05_sky: incorporate Skyrme interactions Y. Zhang (2013) Private Communication Tsang (2013) Private Communication

ImQMD:

- Cluster production for alphas is not realistic
- Possible solution: Ignore the cluster production mechanism and look all the light particles (neutrons and protons) at a given velocity

Coalescence invariance:

- Coalescence protons (neutrons):
 Include protons (neutrons) from within clusters with the free proton (neutron) spectra
- Possibly a better match between simulation and experimental data

ImQMD – effective mass

ImQMD05_sky: incorporate Skyrme interactions Y. Zhang (2013) Private Communication Tsang (2013) Private Communication

ImQMD:

- Cluster production for alphas is not realistic
- Possible solution: Ignore the cluster production mechanism and look all the light particles (neutrons and protons) at a given velocity

Coalescence invariance:

- Coalescence protons (neutrons):
 Include protons (neutrons) from within clusters with the free proton (neutron) spectra
- Possibly a better match between simulation and experimental data

ImQMD - effective mass

Z.Chajecki - NuSYM 2013

ImQMD - effective mass

Z.Chajecki - NuSYM 2013

pBUU: light clusters

n

- Includes dynamical production of • clusters up to A=3 (but not beyond)
- m^{*}=0.7m₀, m^{*}_p= m^{*}_n •
- Calculations underpredict the • double-ratio at low energies

pBUU: light clusters

- Includes dynamical production of clusters up to A=3 (but not beyond)
- $m^*=0.7m_0, m_p^*=m_n^*$
- Calculations underpredict the double-ratio at low energies

Alpha production not included in the model => alpha ends up being t or ³He **Solution**: combine experimental alpha spectra with tritons and helium-3 and compare to the model predictions

Z.Chajecki - NuSYM 2013

pBUU: light clusters

SEP at NSCL: What we hope to learn?

SEP at NSCL: What we hope to learn?

Summary

- The density dependence of the symmetry energy is of fundamental importance to nuclei, nuclear matter and neutron stars
- We presented results on n/p and t/³He double-ratios from ^{112,124}Sn+^{112,124}Sn collisions at E/A=50 and 120 MeV.
- Calculations show a sensitivity of the n/p (double-) ratio to the symmetry energy and effective mass and the sensitivity of the t/³He (double-) ratio to the symmetry energy
- There are more ingredients of the transport models than just symmetry energy that have to be better constrained (x-section, cluster production, ...) - need more observables and systematics
- Differences between models have to be understood

Thank you collaborators!

- Dan Coupland
 - Jenny Lee
- Mike Youngs
- William Lynch
- Betty Tsang
- Zbigniew • Chajecki
- Michael Famiano
- Brenna Giacherio
- **Tilak Ghosh**
- Rachel Showalter
- Micha Kilburn

- Fei Lu
- John Novak •
- Paulo Russotto ٠
- Alisher • Sanetullaev
- Concettina Sfienti •
- Giuseppe Verde •
- Jack Winkelbauer •

