3rd International Symposium On Nuclear Symmetry Energy NSCL/FRIB, MSU, MI, USA, July 22-26

Experimental effort to study Symmetry Energy with the Cooling Storage Ring at Lanzhou

Zhigang Xiao

Tsinghua University, Beijing

- Nu Xu (CCNU) Zhiyu Sun (IMP-CAS) Lei Zhao (USTC) Yi Wang (THU) Ming Shao(USTC) YuGang Ma, Fei Lu (SINAP): TPC Xiang Ming Sun (CCNU)
 - : Spokesperson
 - : Beam Line/Dipole/Experiment
 - : Read-out electronics/DAQ
- L. M. Duan (IMP-CAS) : For MWDC design, assembling and test
 - : TOF
 - : TOF
 - : Silicon Pixel Detector/ZDC

清華大学 物理系

Pion probe to E_{sym}(ρ) at ~2ρ₀ Machine and Detector Phase I Experiment and detector R&D Outlook

 $E_{\rm sym}(\rho)$ with π -/ π + ratio: Soft or Stiff ?

CEE

Physics Letters B 683 (2010) 140-144

Stiff

or loss sensitivity on γ Jun Hong, NUSYM13 Poster

Model Dependent Puzzle

 $\mathbf{R}(\pi^{-}/\pi^{+})$

AuAu 1 GeV/u

0.5

1.5

2013/01/10 13.20

EXP

b=0

b=1

b=2

b=3

0.6

0.4

 \triangle x=1 \bigcirc x=0

x=-1

Theoretically:

- Treating of pion is model dependent, other effects to be considered...
- Need to compare more pion related quantities, and more diagnostic spectra ...
- to achieve further understanding on pion production and transport in HIC

Diagnostics I

• A soft EOS leads to a enhanced N/Z at high density

Diagnostics II

High density achieved in the central region, where a larger N/Z asymmetry is experienced with a softer $E_{sym}(\rho)$.

Experimentally ...

- ► More data at different beam energy → Beam Energy Scan in sensitive regime
- More Systems with rather sensitivity
- ► More data at different phase coverage → Whole phase space comparison

Samurai TPC project (MSU/RIKEN)

and others

Outline Pion probe to E_{sym}(ρ) at ~2ρ₀ Machine and Detector Phase I Experiment and detector R&D Outlook

Introduction to HIRFL: Beam facilities

Introduction to HIRFL: Exper. Sites

(6) CEE – **CSR** External-Target Experiment

HIRFL-CSR energy range is favored

CEE conceptual design

Main Parameters

Main Feature	Designed	Main Feature	Designed
Emin	0.3 GeV/u	Emax	2.8 GeV/u (p)
Heaviest Sys.	U+U	Max. Rate	10 ⁴ Hz
# Channels	2*10 ⁴	Coverage	>50%
P Resolution	5%	Syst. Error	10%

Physics with CEE

- 1) Asymmetry nuclear EOS
- 2) Reaction dynamics
- 3) Medium Effect
- 4) Λ hyper-nuclei
- 5) N*

Dipole concept

Central Field	0.5 T	
Field Dimension	$\sim 1 \text{ m} \times 1 \text{ m} \times 1.5$ m ³	
Inhomogeneity	1%	
Total Size	\sim 2.5 \times 3 \times 4 m ³	
Total Weight	200 Ton	

Prototype of a superconductive magnet (Made in IMP, for FAIR)

MWDC Concept

Large Area MWDC array

Three sense plane, Two arms, Six MWDCs total area $\sim 12 \text{ m}^2$.

→ Expected Performance:

R< 300 μ m, MIPs Efficiency per layer >95% .

Area (W×H)	1280×1200	1440×1300	1760×1500
Sense Wires	416	464	560
Pieces	2	2	2
Structure Anode Plane	Φ20μm W(Au), Tension 60g, Wire Distance10mm;		
	Field Wire $\Phi75\mu m$ Be-Cu, Tension 120g		
Structure	Φ 75µm Be-Cu, Distance 2mm, Tension		
Cathode Plane	120g;		
Total Readout	2880	Total Area	12.1m ²
MIP Efficiency	η>96%(Single Layer)	Position Resolution	σ<300μm

TPC concept

Readout Are	~1.2 m× 0.9 m
# Channel	~11000 (110×100)
Paddle Size	9 mm × 9 mm
Drift length	60 cm
Working Gas	90% Ar + 10% CH ₄
Field	150V/cm
dE/dx Range	Z<=3, π,p,d,t,He-Li
Track Resolution	2.5~3 cm
Max. Multiplicity	200

Outline Pion probe to E_{sym}(ρ) at ~2ρ₀ Machine and Detector Phase I Experiment and detector R&D Outlook

CEE Phase I

Whether The physics still there?

Test Beam

- C+C @ 200,600 MeV/u
- Three MWPC tracking
- 12 TOF Strips + Start
- 1 Neutron Wall
- Inclusive
- B~0.4T, reversible

4 mm wire distance 0/1 resolution

Test Experiment Output

Experiment: 600 MeV/u Simulation: $\sigma_{MWPC}=1.5 \text{ mm}\approx 4/(12)^{0.5}$

1) Tracks reconstructed well, Pion ratio ~ 1 in C+C

2) Limited electronics, detector resolution and dirty background ...

3) Systematic error not controlled

MWDC Parameters

Design and Manufactory of MWDC

Wiring: Frame=1.6m × 1.6m。

Soldering Wire and Frame

Leak rate Test

Wire Frame/Tension Preset

A Large MWDC to be completed

Installed for Beam Test

Electronics

PXI based DAQ

Electronics test with MWDC

Large MWDC Prototype Test

Positron drift lines from a wire ENTRIES 5855 1500 Gas: Ar 85%, CO₂ 15%. Isochron interval: 0.02 [µsec] V-Axis [cm] 0.4 Drift time(0.1ns) 1000 0.2 0.1 500 -0.1 -0.2 0 -0.3 -5 10 -0.45 0 Cosmic ray position(mm) 2 0.2 0.3 0.4 . • ċ.3 -0.2 6 x-Axis [cm] 0.03 r 200 simulation 0.025 experiment data 150 0.02 (su) 100 0.015 0.01 50 0.005 0 3 L(mm) 0⁶ 0 1 2 4 5 6 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 drift distance (cm)

Large MWDC Prototype Test

Large MWDC Prototype Test

Best Residue: σ =240µm @ 1700⁺ V

Tracking Test with MWDC array

Drift Length Resolution

resolution vs residual

Simulations

Detector Construction

Digitization and Event Display

Geant 4 Simulation Framework Done

Track Reconstruction

Simulation: ITOF – Short flight length

Typical flight length < 0.5m

Due to short flight length, TOF PID can't extend the PID range of *dE/dx* much.

ITOF used as trigger detectors only

Y-axis: 3σ separation momentum limit

- 1. Forward momentum resolution: <5%
- 2. i-TOF for trigger only

- 1) Detector Array Installation
- 2) Online System extension
- **3) Integration of the whole system**
- 4) Tests

> 3 years' work !

- The symmetry energy at supra-saturation density is of high scientific interest. Large pushing effort, both experimentally and theoretically, is witnessed in China.
- A large spectrometer, called CEE, is being proposed at HIRFL-CSR.
- A phase-I experiment is being built, with MWDC being the major tracking detector.

Thank you!