ハドロンスペクトロスコピー

岡真

東京工業大学大学院理工学研究科

三者若手夏の学校 2011年8月17日

はじめに

物理の研究の本質

物理現象の記述に最も適切な変数 (座標系, 自由度)の選択

原子核・ハドロン物理の理解に適当な変数はなにか?

原子核物理

新しい変数(自由度)の導入の歴史

1932 ~ 核子 (p, n)

1934 ~ 中間子 $(\pi, \rho, ...) =>$ 核力、 π 凝縮、平均場

1950 ~ ハイペロン (A,..) => ハイパー核、一般化された核力

1980 ~ クォーク (u, d, . .) => EMC効果

1990~ 中間子原子核(K,..)

はじめに

ハドロン物理

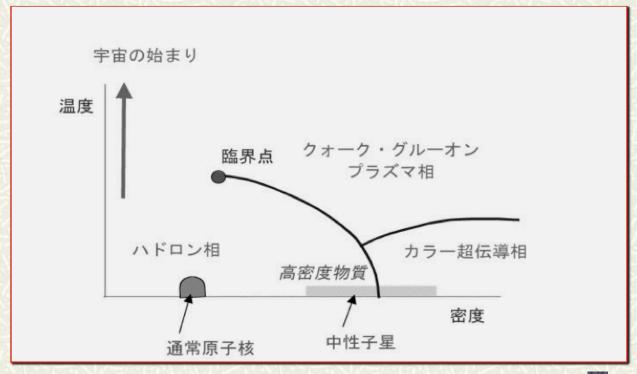
```
1960 ~ カイラル対称性、有効理論 \Rightarrow \pi, \sigma, \rho, ...
```

1983 ~ スカーミオン、カイラル摂動論・有効理論

2000 ~ QGP, カラー超伝導、AdS-CFT双対性

高温、高密度核物質で新しい自由度

カラーの解放


カイラル対称性回復
$$\langle \overline{q}q \rangle$$
 オーダーパラメータ

カラー超伝導
$$\left\langle qq
ight
angle_{color}$$

はじめに

ハドロン・原子核物理の目標は

QCDの相図上の各領域で、最も適切な力学変数を見つける

なぜハドロンスペクトルか?

そのために

1. ハドロン相互作用に関する物理現象の解明

多種類のハドロン、多彩で複雑な反応、相互作用、構造

メソンとバリオン 基底状態と共鳴状態(幅も1~500 MeV)

フレーヴァー (u, d, s, c, b, t)

束縛状態(原子核、ダイバリオン、分子共鳴)

基本理論:QCD クォークとグルーオンのカラーゲージ理論

でもカラー(クォークやグルーオン)は見えない(閉じ込め)

2. 新しい形態の物質構造の探索

高温、高密度での新しい物質相(宇宙初期、高密度星)

エキゾティックハドロン (ペンタクォーク、ダイバリオン)

なぜハドロンスペクトルか?

QCDにとってハドロンスペクトル研究が重要な理由

- QCDの真空が複雑 (T, p) 相図 強い相関 カイラル対称性の破れ、カラーの閉じ込め ハドロンは対称性の破れた基底状態の励起モード メソン Jπ= 0- → 0+ → 1- バリオン 1/2+ → 1/2+ → 1/2- (例) 原子核 0+ → 2+ → 4+ 変形核の回転
- 多様な**励起状態**の発見
 クォークの励起 スピンや軌道運動
 ハドロンの <u>分子共鳴</u> 状態
 エキゾティック ハドロン(多クォーク、グルー)
- 3. カラー閉じ込め機構の解明

なぜハドロンスペクトルか?

古い問題: クォークか? ハドロンか?

基底状態のバリオンとメソンではクォーク模型による分類が大成功!

しかし 励起状態は?

スカラー中間子

a₀, f₀ は qq か? tetra-qか? KK 束縛状態か?

負パリティバリオン

P波 qqq か? penta-q か? ハドロン共鳴か?

Λ(1405) 最も軽い負パリティバリオンの正体は?

ハドロンスペクトル

3つの異なる見方

QCD Quark model

quark+gluon constituent quark hadrons

color gauge symmetry global color symmetry no color (singlet)

Effective theory

Chiral Symmetry Breaking

various phases

massive quarks

NG bosons

lattice QCD vacuum condensates

SU(6) symmetry hamiltonian approach

chiral effective theory chiral perturbation

講義1

現代的視点・核物理の視点から

- ◆ 基本概念 ハドロン・クォークとQCD
- ◆ ストレンジネス
- ◆ 一般化された核力とJ-PARCのストレンジネス核物理

基本概念

- ハドロン (hadron)
- クォーク (quark)
- QCD (Quantum Chromodynamics)

ハドロン

- ハドロン 強い相互作用に関わる素粒子
- バリオンとメソンバリオン(重粒子) 陽子、中性子、ハイペロン メソン(中間子) パイオン、K、ρ、J/ψ
- 強い相互作用ex. 核力(湯川理論)陽子・中性子の力 原子核を束縛する

ハドロン

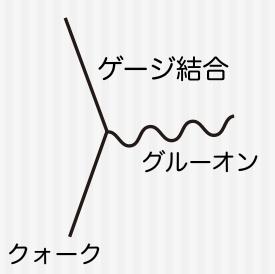
■ 強い相互作用の保存則

バリオン数=3 x クォーク数 (統一理論で破れる?)

フレーヴァー ストレンジネス、チャーム、ボトム、トップ
(弱い相互作用で破れる)

素粒子の基本相互作用標準理論 電弱相互作用 電磁相互作用 弱い相互作用 強い相互作用

統一原理:ゲージ場の理論


クォーク

■ 標準理論 ゲージ場の理論

		スピン	強い相互作用	電弱相互作用
フェルミオン	ノクォーク	1/2		
	レプトン	1/2	×	
ボソン	ゲージボソン	1		
	ヒッグス	0	×	

強い相互作用のゲージ理論 QCD (Quantum Chromodynamics) カラー電荷 SU(3)ゲージ対称性

ハドロン=クォーク+グルーオン

クォーク

クォークの量子数

カラー SU(3) ゲージ対称性の基本表現 3=(R, B, G) スピン $1/2(\uparrow, \downarrow)$ カイラル (R, L) 対称性は破れている フレーヴァー (u, d)(c, s)(t, b) 弱アイソスピン $Q_R = 0$ $Q_L = 1/2$

グルーオンの量子数

カラー SU(3) ゲージ対称性の随伴表現 $N^2-1=8$ 成分 スピン 1 (ただし、質量 0 なので、 2 成分) フレーヴァーなど他の量子数は持たない

QCD:

Gauge invariance

QCD (Quantum Chromodynamics) Lagrangian

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} \{ G^{\mu\nu} G_{\mu\nu} \} + \bar{q} (i\gamma \cdot D - M) q$$

$$q = \begin{pmatrix} q^R(x) \\ q^B(x) \\ q^G(x) \end{pmatrix} \quad A^{\mu} = \sum_{a=1}^8 \frac{\lambda^a}{2} A^{a\mu}$$

$$G^{\mu\nu} = \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} + ig[A^{\mu}, A^{\nu}]$$

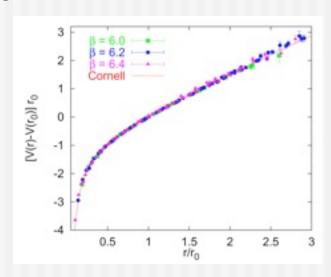
Local gauge invariance

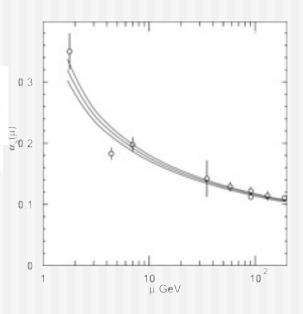
$$q(x) \to q'(x) = U(x)q(x)$$

$$D_{\mu}q(x) \to U(x)D_{\mu}q(x)$$

$$A_{\mu}(x) \to A'_{\mu}(x) = U(x)A_{\mu}U^{-1} + \frac{i}{g}\partial_{\mu}U(x)U^{-1}(x)$$

QCD:


Asymptotic freedom/ Confinement


Asymptotic freedom

$$\alpha_s(Q^2) = \frac{12\pi}{(33 - 2N_f) \ln \frac{Q^2}{\Lambda^2}} + \text{(higher order terms)}$$

$$\Lambda = \Lambda_{QCD} \approx 280 \text{MeV}$$

Quark confinement

Quenched Wilson SU(3) Lattice G.S. Bali, Phys. Rept. 343 (2001) 1

QCD:

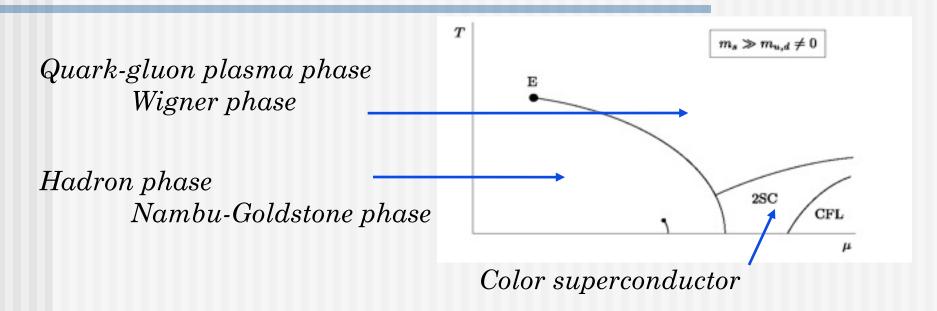
Nontrivial vacuum

quark condensates break chiral symmetry

$$\langle \bar{u}u \rangle \equiv \langle 0| : \bar{u}u : |0\rangle \approx \langle \bar{d}d\rangle \approx (-230 \text{MeV})^3 \qquad \langle \bar{s}s \rangle \approx 0.8 \langle \bar{u}u \rangle$$

$$\langle \bar{s}s \rangle \approx 0.8 \langle \bar{u}u \rangle$$

gluon condensate breaks scale invariance


$$\langle G^2 \rangle \equiv \langle 0 | : \frac{\alpha_s}{\pi} G^{\alpha\mu\nu} G^{\alpha}_{\mu\nu} : | 0 \rangle \approx (330 \text{MeV})^4$$

instantons

nontrivial topology

$$\int G_{\mu\nu}\tilde{G}_{\mu\nu}d^4x \neq 0$$

QCD: Ground state phases

Chiral symmetry restoration NG phase Wigner phase $\langle \bar{q}q \rangle \neq 0 \longrightarrow \langle \bar{q}q \rangle = 0$

QCD: Phase transition

Lattice QCD at finite T

F. Karsch, hep-lat0106019

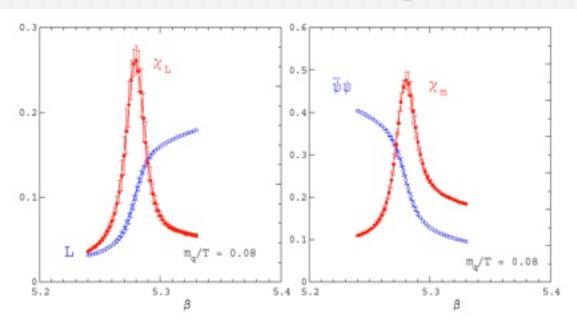


Fig. 2. Deconfinement and chiral symmetry restoration in 2-flavour QCD: Shown is $\langle L \rangle$ (left), which is the order parameter for deconfinement in the pure gauge limit $(m_q \to \infty)$, and $\langle \bar{\psi}\psi \rangle$ (right), which is the order parameter for chiral symmetry breaking in the chiral limit $(m_q \to 0)$. Also shown are the corresponding susceptibilities as a function of the coupling $\beta = 6/g^2$.

QCD: Phase transition

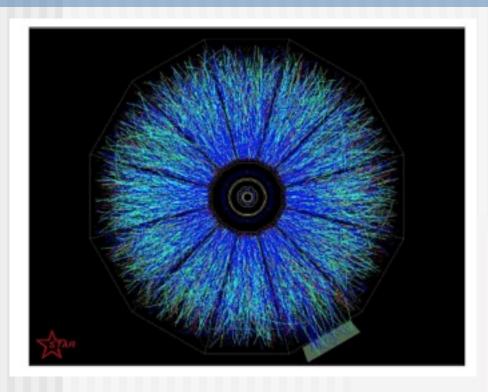
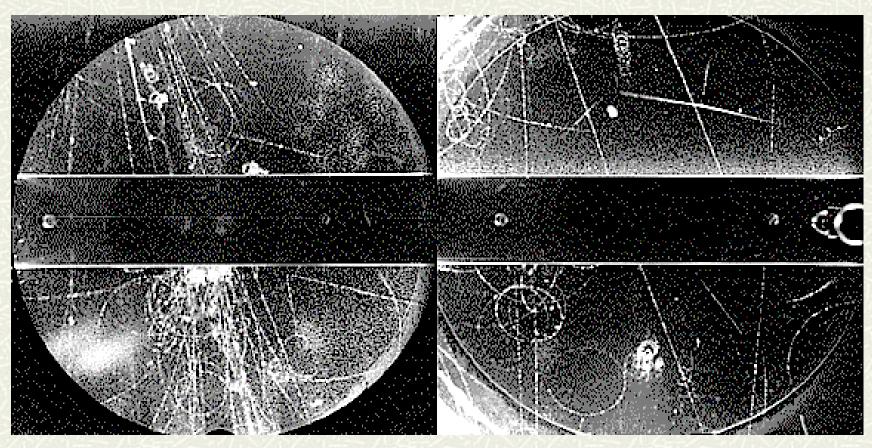



図 2: Brookhaven 研究所の RHIC 加速器。重イオンを右回りと左回りの2つのリング上で核子あたり100GeV まで加速し、4ヶ所で衝突させて生成される粒子などを観測する。偏極した陽子を加速して陽子中のグルーオンなどの持つスピンを測る実験も行われている。

```
フレーヴァー発見の歴史
新粒子の発見 宇宙線 (エマルジョン実験)
パイオン (1947)
V粒子 (1947)
対生成 保存則 (強い相互作用)
寿命が長い 保存則を破る崩壊 (弱い相互作用)
```

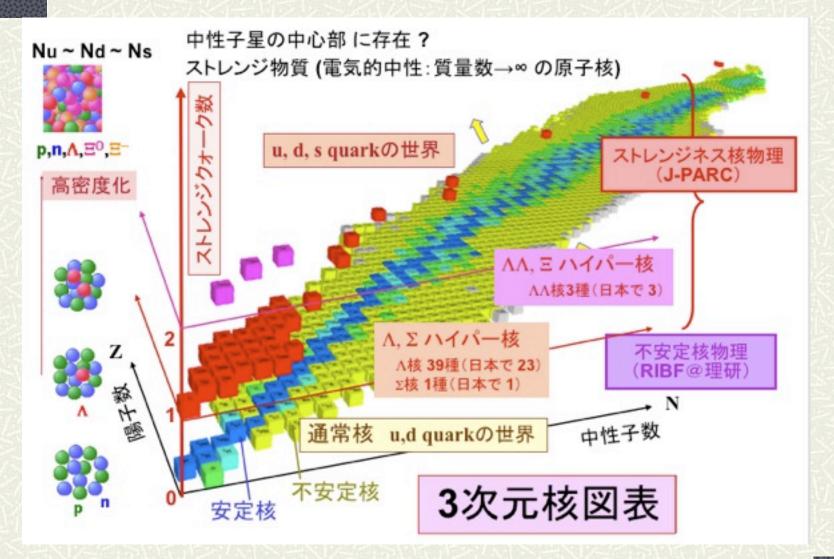
保存則に対応する量子数

多数の新しいハドロンの分類 ハドロンの対称性

新しいクォークの種類

V粒子 (K中間子) の発見 (1947)

第2世代の役割?

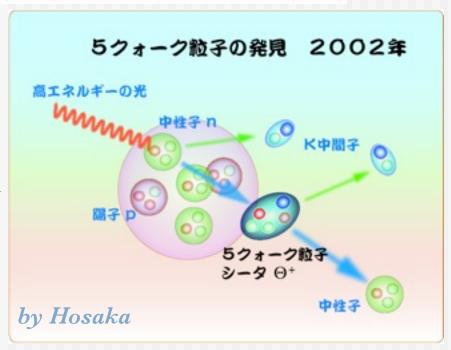

$$\begin{pmatrix} u \\ d \end{pmatrix} \qquad \begin{pmatrix} c \\ s \end{pmatrix} \qquad \begin{pmatrix} t \\ b \end{pmatrix} \\
\begin{pmatrix} \nu_e \\ e \end{pmatrix} \qquad \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix} \qquad \begin{pmatrix} \nu_\tau \\ \tau \end{pmatrix}$$

- # なぜストレンジネスが面白いのか?
 - 新しいアイディアの宝庫
 - QCDの非摂動現象を最もよく反映
 - 有限密度QCDへの手掛り コンパクト星理解の鍵

- 素粒子・原子核物理に質的に新しく面白い対象を導入第2世代ハドロンの発見 Nishijima-Gell-Mann
 SU(3)対称性 とクォーク模型 ⇔ SU(2) アイソスピン 非レプトン弱過程 K → ππ, Λ → Nπ ΔI=1/2 則 世代間混合の発見 CKM行列 CPの破れ
- → ハイパー核の発見 Λが核内で独立粒子として振舞う新しい弱相互作用 ΛΝ(ΣΝ)=> ΝΝ, ΛΛ => ΣΝ, ΛΝ Σハイパー核、ダブルハイパー核 → さらにチャームへ一般化された核力の解明へ向けて

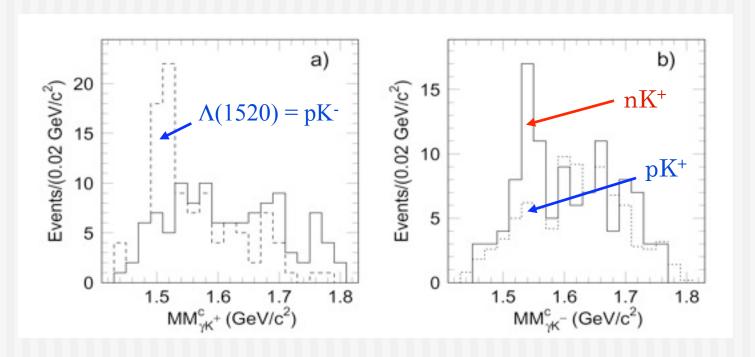
ms & AQCD QCD 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25ストレンジクォークの質量 $m_s \sim \Lambda_{QCD}$. ストレンジネスはQCDの非摂動現象に敏感 カイラル有効理論の成否 $m_s/\Lambda_{QCD} \sim m_K^2/\mu$ chiral symmetry de-coupled heavy quarks light quarks Λ_{QCD} 100 m_{a} 10 100 GeV

- → エキゾティックハドロン、原子核 ダイバリオン、ストレンジレット K束縛原子核、K凝縮 ペンタクォーク 安定なストレンジレット?
- → 中性子星はストレンジネスを持った巨大原子核!
 ストレンジネスによって変わる状態方程式
 K凝縮、Λ, Σ, Ξ 混合
 荷電平衡条件が s クォークを混ぜる!
 YN, YY 相互作用が状態方程式を左右する


Penta-quark@SPring-8

Evidence for Narrow S=+1 Baryon Resonance in

Photo-production from Neutron


T. Nakano et. al. (LEPS collaboration), Phys. Rev. Lett. 91, 012002 (2003)

$$\gamma$$
 n (12C) \rightarrow K⁻ Θ ⁺
 \rightarrow K⁻ K⁺ n
at SPring-8 tagged photon
 $E_{\gamma} < 2.4 \text{ GeV}$

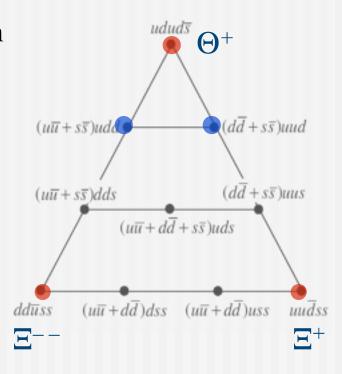
Penta-quark@SPring-8

T. Nakano et al. (LEPS collaboration)

 $M = 1540 \pm 10$ MeV, $\Gamma < 25$ MeV, 4.6σ

Penta-quark@SPring-8

- Θ^+ decays to $n(udd) + K^+(u\overline{s})$
- Conservation laws of strong interaction


$$S = +1, B=1, Q=+1 \Longrightarrow uudds$$

$$Y = B + S = 2$$

$$\longrightarrow$$
 SU(3) 10*, 27, . . .

■ 10* genuine penta-quarks

$$\Theta^+(I=0)$$
, $\Xi(I=3/2) ddssu$, $uussd$

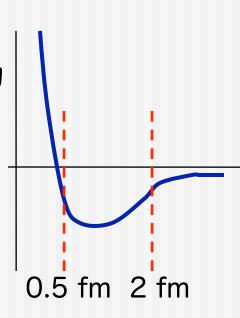
J-PARC (大強度陽子加速器)@東海村

■ ストレンジネス核物理の展開

ストレンジネス核物理

- JPARCのハドロン物理の最重要課題
 - ハイパー核 (S=-1, -2) の生成、構造、崩壊の研究を 通じて一般化された核力の性質を解明する
- KEK PS, BNL AGS等での実験成果を元に
 - S=-1のハイパー核物理の精密化
 - K 中間子の物理への発展
 - S=-2 ハイパー核物理の開拓

■ 核力の特異性 3領域


核力 = OPE + 中距離引力 + 短距離斥力

引力と斥力 ~ 数100 MeV

⇔ 重陽子の束縛エネルギー 2 MeV

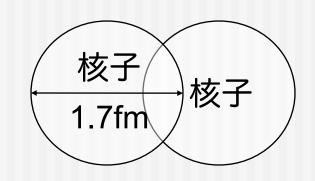
OBEの到達距離 ~ 1 fm

⇔ 重陽子のサイズ ~ 4 fm

■ 他のバリオン間の力も同じ性質を持つのか? 中間子交換力はSU(3)対称性を用いて一般化 短距離斥力は共通なのか? 起源は?

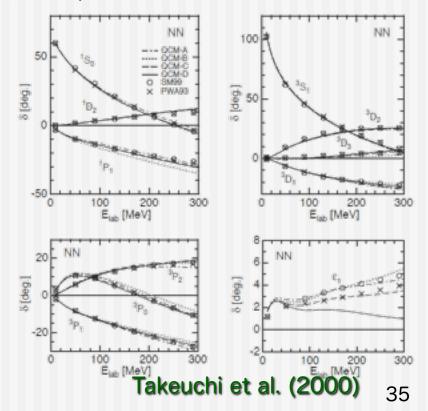
■ OBEPによるアプローチ

Nijmegen potential HC, SC, NSC97, ESC04, ESC06


Julich potential (← Bonn potential)

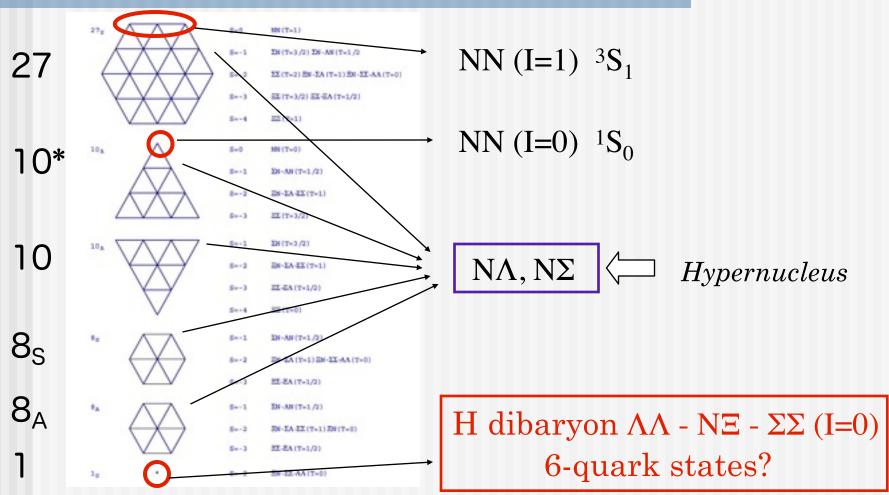
■ 短距離斥力の起源をクォーク構造に求めて


Quark antisymmetrization Tamagaki, Neudachin, Smirnov (1977)

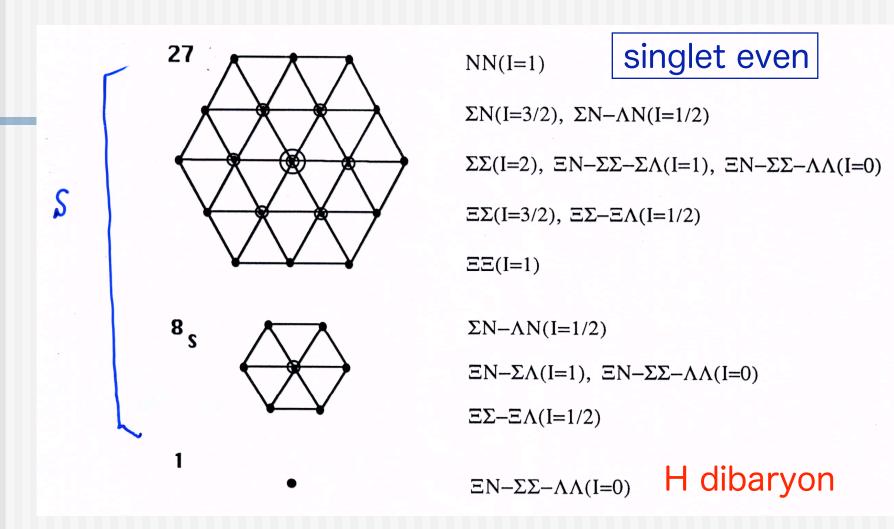

Quark Cluster Model Oka, Yazaki (1980)

短距離核力 R~1 fm核子の励起状態 300~500 MeV斥力芯の強さ 500~1000 MeV

■ Quark Cluster Model クォーク交換(反対称化)に起因する短距離斥力

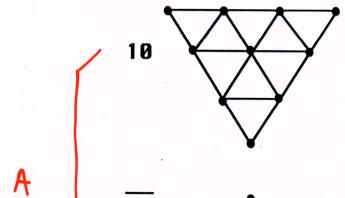

$$SU(6) \supset SU(3)$$
 flavor x $SU(2)$ spin

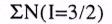
[3]
$$\underline{56}$$
 \langle 8 (S=1/2): N $\Lambda \Sigma \Xi$
10 (S=3/2): $\Delta \Sigma^* \Xi^* \Omega$


SU(3) flavor

8 x 8 = 1 + 8_S + 27 + 8_A + 10 + 10*
Symmetric Antisymm
$$\Lambda\Lambda - N\Xi - \Sigma\Sigma (I=0) \quad NN (I=1) \quad NN (I=0)$$

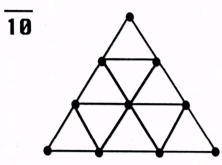
M. O. , K. Shimizu, K. Yazaki, PLB130 (1983) 365, NPA464 (1987) 700 Introduction




Introduction

SU(3) 対称性に従うか? 破れは? $\Lambda N-\Sigma N$, $\Lambda \Lambda-\Xi N-\Sigma \Sigma$ 混合

triplet even



$$\Xi N - \Sigma \Sigma - \Sigma \Lambda (I=1)$$

$$\Xi\Sigma$$
- $\Xi\Lambda(I=1/2)$

$$\Xi\Xi(I=0)$$

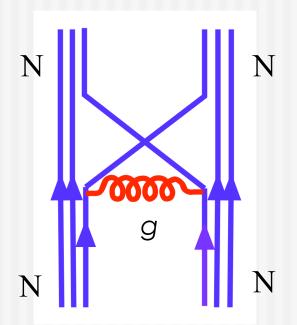
$$NN(I=0)$$

$$\Sigma N - \Lambda N(I=1/2)$$

$$\Xi N - \Sigma \Lambda (I=1)$$

$$\Xi\Sigma(I=3/2)$$

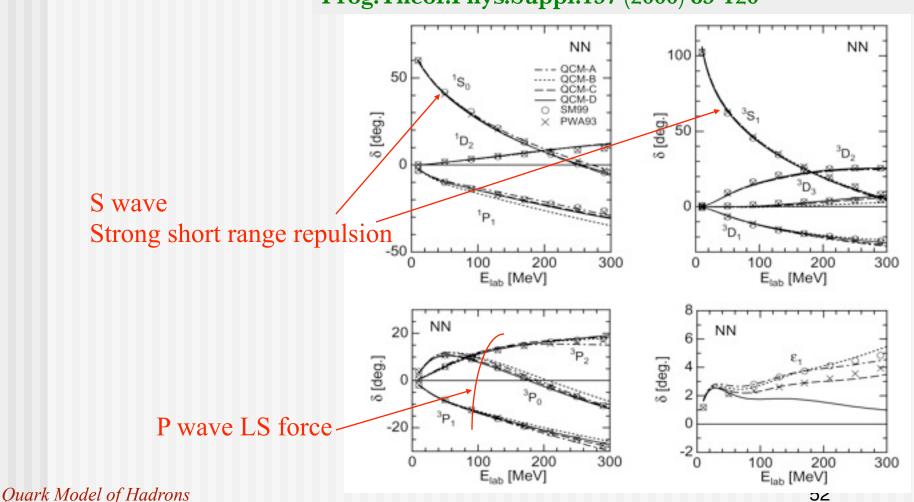
$$\Sigma N - \Lambda N(I=1/2)$$

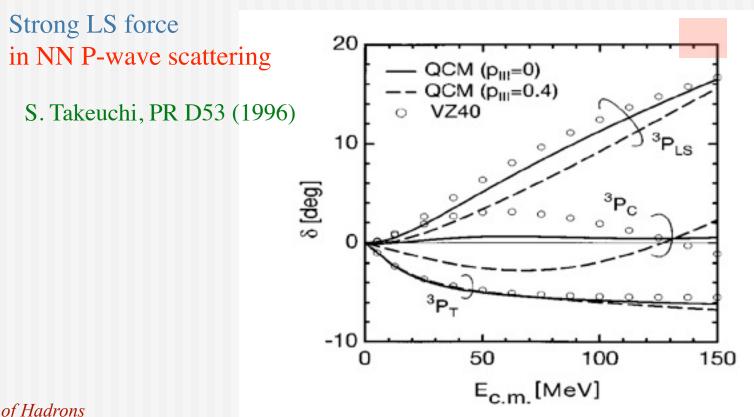

$$\Xi N - \Sigma \Sigma - \Sigma \Lambda(I=1), \ \Xi N(I=0)$$

$$\Xi\Sigma$$
- $\Xi\Lambda$ (I=1/2)

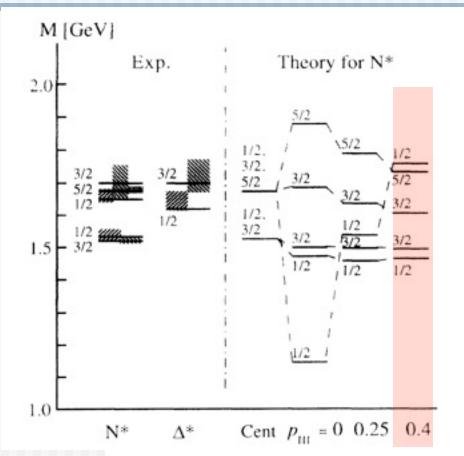
Short range BB interaction

NN: Quark exchange force Fujiwara


NN Short-range repulsion


Pauli exclusion principle
Neudatchin-Smirnov-Tamagaki (1977)
+
color magnetic interaction
Oka-Yazaki (1980)
+
instanton induced interaction
Takeuchi-Oka (1989)

+ long range meson exchange force PS+S+V


S. Takeuchi, O. Morimatsu, Y. Tani, Makoto Oka, Prog.Theor.Phys.Suppl.137 (2000) 83-120

LS force in the NN interaction

III in the baryon spectrum

Weak LS force in the *P wave baryons*S. Takeuchi (1994)

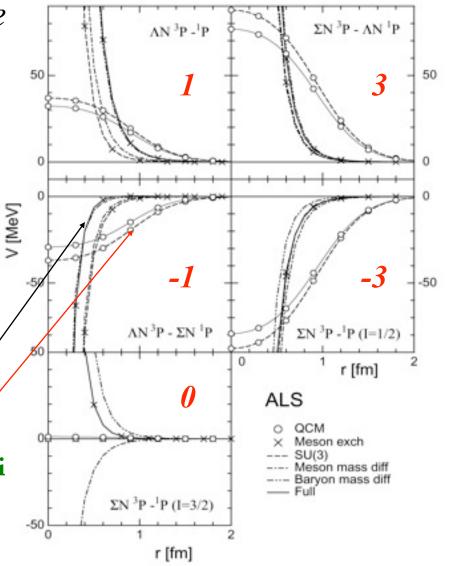
 p_{III} = part of III(KMT) in the hyperfine splitting keeping N- Δ mass diff.

$$H_{\text{quark}} = K + (1 - p_{\text{III}}) V_{\text{OGE}} + p_{\text{III}} V_{\text{III}} + V_{\text{conf}}$$

Strong Antisymmetric LS Force

from quark exchange

$$V_{SLS} = V_S(r)(\vec{\sigma}_Y + \vec{\sigma}_N) \cdot \vec{L}$$


$$V_{ALS} = V_A(r)(\vec{\sigma}_Y \bigcirc \vec{\sigma}_N) \cdot \vec{L}$$

- explains weak LS force on Λ in nuclei
- no ALS for ΣN (I=3/2)

MEX

QEX

Morimatsu, Shimizu, Yazaki Tani, Takeuchi, Oka

