Quark Model of Hadrons

Makoto Oka

PART II of the Lecture

SU(3) Symmetry

mesons $3 \otimes \overline{3} = 1 \oplus 8$ baryons $3 \otimes 3 = 6$ (symmetric) $\oplus \overline{3}$ (antisymmetric) $3 \otimes 3 \otimes 3 = (6 \oplus \overline{3}) \otimes 3 = 10 \oplus 8 \oplus 8 \oplus 1$ antisymmetric symmetric mixed symmetry

Color and Statistics

- Why do quarks have color?
 - ground state baryons
 - orbital wave function = symmetric with *L*=0
 - $SU(3)_f \times SU(2)_s$

- $\Box ctet \qquad \Box S = 1/2 \quad can be antisymmetric$ $decuplet <math display="block"> \Box S = 3/2 \quad cannot be antisymmetric$ $ex. \Delta^{++} S_z = 3/2 = (u^{1})^3$
- Color wave function of baryons totally antisymmetric

Light meson flavor components

۴)

$\frac{1}{\sqrt{2}}(u\bar{s}\pm\bar{s}u)$	K* (K**
$\frac{1}{\sqrt{2}}(d\bar{s}\pm\bar{s}d)$	K ^o (K ^o *)
$-\frac{1}{\sqrt{2}}(s\bar{u}\pm\bar{u}s)$	K (K*
$-\frac{1}{\sqrt{2}}(s\overline{d}\pm\overline{d}s)$	K⁰ (K¯°*)
$\frac{1}{\sqrt{2}}(u\bar{d}\pm\bar{d}u)$	$\pi^{+}(\rho^{+})$
$-\frac{1}{\sqrt{2}}(d\bar{u}\pm\bar{u}d)$	π¯(ρ¯)
$\frac{1}{2}[(d\overline{d} - u\overline{u}) \pm (\overline{d}d - \overline{u}u)]$	$\pi^{\circ}(\rho^{\circ})$
$\frac{1}{2\sqrt{3}}[(u\bar{u}+d\bar{d}-2s\bar{s})\pm(\bar{u}u+\bar{d}d-2\bar{s}s)]$	$\eta_s^0(\omega_s^0)$
$\frac{1}{\sqrt{6}}[(u\bar{u}+d\bar{d}+s\bar{s})\pm(\bar{u}u+\bar{d}d+\bar{s}s)]$	$\eta_1^0(\omega_1^0)$

SU(3) decuplet totally symmetric wave functions

Baryon flavor components

SU(3	3) octet 🛛 🗛 📳	Ф _{М,А} []
P	$\frac{1}{\sqrt{6}}[(ud+du)u-2uud]$	$\frac{1}{\sqrt{2}}(ud-du)u$
N	$-\frac{1}{\sqrt{6}}[(ud+du)d-2ddu]$	$\frac{1}{\sqrt{2}}(ud-du)d$
Σ*	$\frac{1}{\sqrt{6}}[(us+su)u-2uus]$	$\frac{1}{\sqrt{2}}(us-su)u$
Σ°	$\frac{1}{\sqrt{6}} \left[s\left(\frac{du+ud}{\sqrt{2}}\right) + \left(\frac{dsu+usd}{\sqrt{2}}\right) \right]$	$\frac{1}{\sqrt{2}} \left[\left(\frac{dsu + usd}{\sqrt{2}} \right) - s \left(\frac{ud + du}{\sqrt{2}} \right) \right]$
	$-2\left(\frac{du+ud}{\sqrt{2}}\right)s$	
Σ-	$\frac{1}{\sqrt{6}}[(ds+sd)d-2dds]$	$\frac{1}{\sqrt{2}}(ds-sd)d$
Λ°	$\frac{1}{\sqrt{2}} \left[\frac{dsu - usd}{\sqrt{2}} + \frac{s(du - ud)}{\sqrt{2}} \right]$	$\frac{1}{\sqrt{6}} \left[\frac{s(du-ud)}{\sqrt{2}} + \frac{usd-dsu}{\sqrt{2}} - \frac{2(du-ud)s}{\sqrt{2}} \right]$
Ξ	$-\frac{1}{\sqrt{6}}[(ds+sd)s+2ssd]$	$\frac{1}{\sqrt{2}}[(ds-sd)s]$
Ξ	$-\frac{1}{\sqrt{6}}[(us+su)s-2ssu]$	$\frac{1}{\sqrt{2}}[(us-su)s]$
SU(3) singlet 🗛 🗧		
٨î	$\frac{1}{\sqrt{6}}[s(du-ud)+(usd-dsu)+(du-dsu)]$	-ud)s]

Proton wave function

• proton $S_z = +1/2 = (uud) (\uparrow \uparrow \downarrow)$

$$\begin{array}{c} \boxed{\begin{array}{c} u \\ d \end{array}} & 2\text{-dim representation} \\ \\ |S_f\rangle \equiv \sqrt{\frac{2}{3}}uud - \sqrt{\frac{1}{3}}\frac{ud + du}{\sqrt{2}}u = \frac{1}{\sqrt{6}}(2uud - udu - duu) \\ \\ |A_f\rangle \equiv \frac{ud - du}{\sqrt{2}}u = \frac{1}{\sqrt{2}}(udu - duu) \\ \\ |p\uparrow\rangle = \frac{1}{\sqrt{2}}(|S_fS_s\rangle + |A_fA_s\rangle) \\ \\ \frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{6}}(2uud - udu - duu)\frac{1}{\sqrt{6}}(2\uparrow\uparrow\downarrow - \uparrow\downarrow\uparrow - \downarrow\uparrow\uparrow) + \frac{1}{\sqrt{2}}(udu - duu)\frac{1}{\sqrt{2}}(\uparrow\downarrow\uparrow - \downarrow\uparrow\uparrow)\right] \\ \\ \frac{2}{\sqrt{18}}(u\uparrow u\uparrow d\downarrow + \text{all perm.}) - \frac{1}{\sqrt{18}}(u\uparrow u\downarrow d\uparrow + \text{all perm.}) \end{array}$$

Quark Model of Hadrons

=

Quark Model

Powerful tool to understand hadron spectrum, structures and dynamics.

With proper dynamical contents, it is applicable to multi-quark systems, such as 2-baryons, pentaquarks. Quarks in QCD

QCD Lagrangian

$$\mathcal{L} = \bar{q}(i\not\!\!D - m)q - \frac{1}{4}\mathrm{Tr}[G_{\mu\nu}G^{\mu\nu}]$$

quark
B = 1/3, C = 3
(u,d) : I = 1/2, S = 0, Y = 1/3
s : I = 0, S = -1, Y = - 2/3

$$D_{\mu} \equiv \partial_{\mu} + igA_{\mu}$$
$$A_{\mu} \equiv \frac{\lambda^{a}}{2}A_{\mu}^{a}$$
$$G_{\mu\nu} \equiv \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ig[A_{\mu}, A_{\nu}]$$

Quark masses and scale of QCD

Constituent Quark

Dyson-Schwinger equation

$$S_{F}^{-1}(p) = S_{F0}^{-1}(p) - \Sigma(p)$$

$$S_{F0}^{-1} = \not{p} - m$$

$$S_{F}^{-1} = A(p)\not{p} - B(p) \longrightarrow \text{ effective mass generated}$$
dynamical chiral symmetry breaking

Constituent Quark

Conserved currents are not renormalized. I, Y, C charges do not change. Constituent quark mass $m_{\rm a} \approx 300 \,\,{\rm MeV}$ (u, d) $m_{\rm s} \approx 500 \,\,{\rm MeV}$ (s) Residual interactions are weak. except confinement

Light quarks connected by string
 H= *p* + *σr* with *J* = *pr* fixed
 Virial theorem *E*(*J*) = 2 √*σJ* or *m*₁² = 4*σJ* (Regge trajectory)

Color Confinement

heavy quark : quarkonium Lattice QCD: Wilson loop

Color Confinement

Casimir scaling $V(r) = \sum (T_1^a T_2^a) v(r)$ $\sum_{a} (T_1^a T_2^a) = \frac{1}{2} [\sum_{a} (T_1^a + T_2^a)^2]$ $-\sum (T_1^a)^2 + (T_2^a)^2$] $3x\overline{3}=1$ - 4/3 $3x3 = \overline{3} - 2/3$ 8x8 = 1-3

Quark Model of Hadrons

G.S. Bali / Phys. Rep. 343 (2001) 1

Color Confinement

Confinement potential

$$V(r_{12}) = -\sum_{a} (\lambda_1^a \lambda_2^a) \, a \, r_{12}$$

string tension $\sigma = rac{16}{3} a \sim 1 {
m GeV/fm}$

confine colored subsystem

- no confinement between color singlet objects
- Lorentz property?
 Lorentz scalar or vector? relativistic effects? ex. spin-obit interaction

Charmonium and bottomium

Potential model approach

$$\begin{split} H &= 2m_Q + \frac{\vec{p}^2}{m_Q} + S(r) + V(r) \\ S(r) &= \sigma r + b \\ V(r) &= -\frac{4}{3} \frac{\alpha_s(r)}{r} \simeq -\frac{4}{3} \frac{\alpha_s^0}{r} (1 - \exp(-(r/R_c)^{\kappa})) \end{split}$$

 R_c and κ fit to the running coupling constant S.N. Mukherjee, et al., Phys. Rep. 231 (1993)

Charmonium and bottomium

S.N. Mukherjee, et al., Phys. Rep. 231 (1993)

 $\sigma = 0.90 {
m GeV/fm}$ $b = -0.030 {
m GeV}$ $lpha_0 = 0.732$ $R_c = 0.5 {
m GeV^{-1}}$ $\kappa = 0.582$

Baryon Spectrum

Baryon Spectrum

HF interaction in Baryon

- N- Δ mass splitting (300 MeV) $\Leftrightarrow \Delta_{ss} \sim 50 \text{ MeV}$
- $\Lambda \Sigma$ mass splitting (~77 MeV) from SU(3) breaking $\Sigma_{\rm HF} = \Delta_{\rm ss} \{ \vec{\sigma}_u \cdot \vec{\sigma}_d + \boldsymbol{\xi} \times \vec{\sigma}_s \cdot (\vec{\sigma}_d + \vec{\sigma}_u) \}$ 50 MeV Λ (ud)_{I=0,S=0} s 50MeV x [(-3) + 0 * ξ] Σ (ud)_{I=1,S=1} s 50MeV x [1 + (-4) * ξ] ξ - factor: s-u, s-d HF interaction is weaker than u-d. for $\xi = 3/5 \rightarrow \Sigma - \Lambda = (8/15) \text{ x150 MeV} = 80 \text{ MeV}$

Origin of $(\sigma \cdot \sigma)$ Interaction

One gluon exchange (OgE) or color-magnetic (CM) interaction Breit-Fermi, DeRujula-Georgi-Glashow

$$\alpha_s \lambda_i \frac{\vec{\sigma}_i \cdot \vec{q}}{m_i} \frac{1}{q^2} \lambda_j \frac{\vec{\sigma}_j \cdot \vec{q}}{m_j} \simeq \underbrace{\alpha_s}_{\substack{m_i m_j \\ \downarrow}} (\lambda_i \cdot \lambda_j) (\vec{\sigma}_i \cdot \vec{\sigma}_j) \delta(\vec{r}_{ij})$$

SU(3) breaking $m_u / m_s \sim 3/5$

$$\Sigma_{\rm CM} = -\Delta_{\rm CM} \Sigma_{i < j} \xi_{ij} (\lambda_i^c \cdot \lambda_j^c) (\vec{\sigma}_i \cdot \vec{\sigma}_j)$$

N- Δ mass splitting (300 MeV) $\Leftrightarrow \Delta_{CM} \sim 18.75$ MeV

Origin of $(\sigma \cdot \sigma)$ Interaction

Baryon masses $m_{\rm q} \sim 360 \text{ MeV} \ m_{\rm s} \sim 540 \text{ MeV}$ $M_{\rm N} = 3 m_{\rm q} + \langle V_{\rm cm} \rangle_{\rm N} = 360 \text{x} 3 - 150 \approx 930 \text{ MeV}$ $M_{\Delta} = 3 m_{q} + \langle V_{cm} \rangle_{\Delta} = 360 \text{x} 3 + 150 \approx 1230 \text{ MeV}$ $M_{\Lambda,\Sigma} = 2 m_{\rm q} + m_{\rm s} + \langle V_{\rm cm} \rangle_{\Lambda,\Sigma}$ $= 360x2 + 540 - 90 \approx 1170 \text{ MeV}$ • *H dibaryon* : S = -2, B = 2 $M_{\rm H} = 4 m_{\rm q} + 2 m_{\rm s} + \langle V_{\rm cm} \rangle_{\rm H}$ $= 360x4 + 540x2 - 450 \approx 2070 \text{ MeV}$ $\Lambda\Lambda$ threshold 2230 MeV 20-year searches were not successful.

Instanton Induced Interaction

(2) Instanton-induced-interaction (III) *aka* Kobayashi-Maskawa-'t Hooft (KMT)

instanton-light-quark couplings

flavor antisymmetric -

Instanton Induced Interaction

Instanton-induced-interaction (III) flavor antisymmetric u-d-s 3-body repulsion flavor antisymmetric 2-body attraction

 $V_{III}^{(3)} = V^{(3)} \sum_{(ijk)} \mathcal{A}^{f} \left[1 - \frac{1}{7} \left(\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j} + \boldsymbol{\sigma}_{j} \cdot \boldsymbol{\sigma}_{k} + \boldsymbol{\sigma}_{k} \cdot \boldsymbol{\sigma}_{i} \right) \right] \delta(\boldsymbol{r}_{ij}) \delta(\boldsymbol{r}_{jk})$ $V_{III}^{(2)} = V^{(2)} \sum_{i < j} \mathcal{A}^{f} \left[1 - \frac{1}{5} (\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}) \right] \delta(\boldsymbol{r}_{ij})$ $= V_{ij}^{(2)} \left(2/5 \right) \left(1 - \left[\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j} \right] \right) \delta(\boldsymbol{r}_{ij}) \quad \text{in the baryon}$ $\sum_{j=1}^{N} \frac{1}{2} \sum_{j=1}^{N} \frac{1}{2} \left(\frac{1}{2} \sum_{j=1}^{N} \frac{1}{2} \left(\frac{1}{2} \sum_{j=1}^{N} \frac{1}{2} \sum_{j=1}^{N$

New instanton picture

III (2-body) $\Sigma_{\text{III}} = \Delta_{\text{III}} \Sigma_{i < j} \mathcal{A}_{ij}^f \xi_{ij} [1 - \frac{1}{5} (\vec{\sigma}_i \cdot \vec{\sigma}_j)]$

N- Δ mass splitting (300 MeV) $\Leftrightarrow \Delta_{III} \sim 125$ MeV

III (3-body)

3-body repulsion *flavor singlet* (*u*-*d*-*s*) for H dibaryon $M_{\rm H} > m_{\Lambda\Lambda}$ threshold

u d s

flavor singlet

