反 D 中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

山口康宏

in collaboration with

大古田俊介¹, 安井繁宏², 保坂淳¹

$RCNP^1$, KEK^2

エキゾチックハドロンは "風変わりな"構造を持っている。 qqq や qq̄ では説明することができない。

● ハドロン物理で盛んに研究されているテーマの一つ。

$\overline{D}(B)$ -N bound state

$$\bar{D} = \begin{cases} \bar{D}^0 \left(\bar{c}u \right) \\ D^- \left(\bar{c}d \right) \end{cases}, \quad B = \begin{cases} B^+ \left(\bar{b}u \right) \\ B^0 \left(\bar{b}d \right) \end{cases}$$

• $\overline{D}(B)$ -N bound state

 $ar{Q}q+qqq$ で構成されたのエキゾチックハドロン* <mark>対消滅が起きない</mark>

Previous work

- *D*N 系に対する実験データが不足している
- Yasui,Sudoh¹によって <u>π交換力による</u> DN,BN 束縛状態の存在が示唆された

Heavy meson and Heavy quark symmetry

- Heavy quark symmetry² (HQS) Isuger と Wise が導入²、 $m_Q \rightarrow \infty$ の極限で現れる。
 - Heavy quark spin symmetry

Spin-spin interaction $\longrightarrow 0$

 $\begin{cases} \text{Heavy pseudoscalar meson } \bar{D}(0^{-}) \\ \text{Heavy vector meson } \bar{D}^{*}(1^{-}) \\ \mathcal{O}$ 縮退が起こる

実験でも、PとP*の質量差は小さい

 $\begin{cases} m_{D^*} - m_D \sim 140 \,\mathrm{MeV} \\ m_{B^*} - m_B \sim 45 \,\mathrm{MeV} \end{cases}$

$\longrightarrow P^*N$ mixing が現れる

P^*N mixing and π exchange interaction

 $P^*N \text{ mixing } \check{n} \pi$ 交換相互作用をもたらす \Rightarrow 束縛状態の期待

目的

ヘビーメソンと核子の束縛状態としてのエキゾチック な状態を探す

- 相互作用として HQS に基づいた π, ρ, ω 交換を用いる
- 非相対論近似のもとでシュレディンガー方程式を解き、
 束縛エネルギーとS行列を求める

Interactions

Heavy quark effective theory 3

•
$$\mathcal{L}_{\pi H H} = ig_{\pi} \operatorname{Tr} \left[H_b \gamma_{\mu} \gamma_5 \mathcal{A}_{ba}^{\mu} \bar{H}_a \right]$$

• $\mathcal{L}_{v H H} = -i\beta \operatorname{Tr} \left[H_b v^{\mu}(\rho_{\mu})_{ba} \bar{H}_a \right] + i\lambda \operatorname{Tr} \left[H_b \sigma^{\mu\nu} F_{\mu\nu}(\rho)_{ba} \bar{H}_a \right]$
 $H_a = \frac{1 + \cancel{p}}{2} \left[P_{a\mu}^* \gamma^{\mu} - P_a \gamma^5 \right], \quad \bar{H}_a = \gamma^0 H_a \gamma^0$
vector pseudoscalar
 $\mathcal{A}^{\nu} = \frac{i}{f_{\pi}} \partial^{\nu} \hat{\pi}, \ \rho_{\mu} = \frac{ig_v}{\sqrt{2}} \hat{\rho}_{\mu}, \ F_{\mu\nu}(\rho) = \partial_{\mu} \rho_{\nu} - \partial_{\nu} \rho_{\mu}$
Bonn model⁴
• $\mathcal{L}_{\pi N N} = ig_{\pi N N} \bar{N}_b \gamma^5 N_a \hat{\pi}_{ba}$

•
$$\mathcal{L}_{vNN} = g_{vNN} \bar{N}_b \left(\gamma^{\mu} (\hat{\boldsymbol{\rho}}_{\mu})_{ba} + \frac{\kappa}{2m_N} \sigma_{\mu\nu} \partial^{\nu} (\hat{\boldsymbol{\rho}}^{\mu})_{ba} \right) N_a$$

³R.Casalbuoni ,*et al.* Phys Rept. ,281 (1997) 145 ⁴R.Machleidt ,*et al.* Phys Rept. ,149 (1987) 1

We investigate $J^P = 1/2^-$ and $3/2^-$ state.

• Various coupled channels for $J^P = 1/2^-, 3/2^-$ state.

(1)
$$J^P = 1/2^-$$
 state $\begin{cases} PN & {}^2S_{1/2} \\ P^*N & {}^2S_{1/2}, {}^4D_{1/2} \end{cases}$ 3-channels

(2)
$$J^P = 3/2^-$$
 state $\begin{cases} PN & {}^2D_{3/2} \\ P^*N & {}^4S_{3/2}, {}^4D_{3/2}, {}^2D_{3/2} \end{cases}$ 4-channels

We investigate $J^P = 1/2^-$ and $3/2^-$ state.

• Various coupled channels for $J^P = 1/2^-, 3/2^-$ state.

(1)
$$J^P = 1/2^-$$
 state $\begin{cases} PN & {}^2S_{1/2} \\ P^*N & {}^2S_{1/2}, {}^4D_{1/2} \end{cases}$ 3-channels

$$\rightarrow \text{ bound state } (I = 0)$$
(2) $J^P = 3/2^- \text{ state } \begin{cases} PN & {}^2D_{3/2} \\ P^*N & {}^4S_{3/2}, {}^4D_{3/2}, {}^2D_{3/2} \end{cases}$ 4-channels

 \rightarrow no bound state

We investigate $J^P = 1/2^-$ and $3/2^-$ state.

• Various coupled channels for $J^P = 1/2^-, 3/2^-$ state.

(1)
$$J^P = 1/2^-$$
 state $\begin{cases} PN & {}^2S_{1/2} \\ P^*N & {}^2S_{1/2}, {}^4D_{1/2} \end{cases}$ 3-channels

$$\rightarrow \textbf{bound state} (I = 0)$$
(2) $J^P = 3/2^- \text{state} \begin{cases} PN & {}^2D_{3/2} \\ P^*N & {}^4S_{3/2}, {}^4D_{3/2}, {}^2D_{3/2} \end{cases}$ 4-channels
 $\rightarrow \text{resonance?}$

We investigate $J^P = 1/2^-$ and $3/2^-$ state.

• Various coupled channels for $J^P = 1/2^-, 3/2^-$ state.

(1)
$$J^P = 1/2^-$$
 state $\begin{cases} PN & {}^2S_{1/2} \\ P^*N & {}^2S_{1/2}, {}^4D_{1/2} \end{cases}$ 3-channels

$$\rightarrow \text{ bound state } (I = 0)$$
(2) $J^P = 3/2^- \text{ state } \begin{cases} PN & {}^2D_{3/2} \\ P^*N & {}^4S_{3/2}, {}^4D_{3/2}, {}^2D_{3/2} \end{cases}$ 4-channels

 \rightarrow resonance?

Solve coupled channel equation!

Result for $J^P = 1/2^-$ state

- < ឨ ▶ < ឨ ▶

The bound state with $(I, J^P) = (0, 1/2^{-})$

• The bound states exist in $(I, J^P) = (0, 1/2^-)$ state.

Table: Binding energy and root mean square radii in $(I, J^P) = (0, 1/2^-)$ state.

	$\bar{D}N(\pi)$	$\bar{D}N(\pi\rho\omega)$	$BN(\pi)$	$BN(\pi\rho\omega)$
$E_B \; [\mathrm{MeV}]$	1.60	2.13	19.50	23.04
$\langle r^2 \rangle^{1/2}$ [fm]	3.5	3.2	1.3	1.2

- \overline{D}^*N mixing よりも B^*N mixing の方が強い

Result for $J^P = 3/2^-$ state

▲ 프 ► < 프 ►

The scattering state with $(I, J^P) = (0, 3/2^-)$

- *J^P* = 3/2⁻ 状態には束縛状態はなかった・・・
- Phase shift をみると

The scattering state with $(I, J^P) = (0, 3/2^{-})$

- *J^P* = 3/2⁻ 状態には束縛状態はなかった・・・
- Phase shift をみると

The scattering state with $(I, J^P) = (0, 3/2^-)$

- *J^P* = 3/2⁻ 状態には束縛状態はなかった・・・
- Phase shift をみると

Phase shifts cross $\pi/2 \rightarrow (\text{Resonant state})$

The scattering state with $(I, J^P) = (0, 3/2^{-})$

Phase shifts cross $\pi/2 \rightarrow (\text{Resonant state})$

$PN \ge P^*N$ のチャンネル結合を切る

$$J^{P} = 3/2^{-} \text{ state} \begin{cases} PN & {}^{2}D_{3/2} \leftarrow \text{Ignored} \\ P^{*}N & {}^{4}S_{3/2}, {}^{4}D_{3/2}, {}^{2}D_{3/2} \end{cases} \quad \text{3-channels}$$

PN と *P***N* のチャンネル結合を切る

$$J^{P} = 3/2^{-} \text{ state} \begin{cases} PN & {}^{2}D_{3/2} \leftarrow \text{Ignored} \\ P^{*}N & {}^{4}S_{3/2}, {}^{4}D_{3/2}, {}^{2}D_{3/2} \end{cases}$$

3-channels

$\Rightarrow P^*N$ チャンネル単独で束縛

Table: Bounding energy for P^*N system

	Binding energy [MeV]
\bar{D}^*N	11.50
B^*N	21.67

- Heavy quark symmetry に基づいた相互作用を用いて *DN*, BN 系の束縛状態、散乱状態の解析を行った。
- (*I*, *J^P*) = (0, 3/2⁻) 状態に新たな共鳴状態があることを 予言した。
- 共鳴は Feshbach 共鳴であった。
- ・ 束縛状態、共鳴状態の形成には <u>P*N チャンネルの結合</u>
 と π 交換相互作用 が重要な役割を果たしている。

形状因子Fとカットオフ Λ

vertexの形状因子

反

$$F_{\alpha}(\Lambda, \vec{q}\,) = \frac{\Lambda^2 - m_{\alpha}^2}{\Lambda^2 + |\vec{q}\,|^2}$$

 核子の vertex のカットオフ A_N は Bonn potential で Deuteron の束縛エネルギーを再現するように決定する
 ヘビーメソンの vertex のカットオフ A_P は

$$\Lambda_D = 1.35\Lambda_N$$
$$\Lambda_B = 1.29\Lambda_N$$

Table: Cutoff parameter.

	Potential	$\Lambda_N \; [{ m MeV}]$	$\Lambda_D \; [{ m MeV}]$	$\Lambda_B \; [\text{MeV}]$		
	π	830	1121	1070		
	π,ρ,ω	846	1142	1091	E.	<i>S</i> Q
マット・パイートも主体小学しましいがっから			「 声 の 光 林			