Quarkyonic matter

理研仁科センター 橋本数理物理学研究室

極限状態でのQCD

クォーク物質

Quantum ChromoDynamics SU(3) ゲージ理論 クォーク グルーオン 小さい質量, スピン 1/2 質量ゼロ, スピン 1 表現:3(R,G,B) 8

Quantum ChromoDynamics

漸近的自由性 閉じ込め カイラル対称性の自発的破れ

漸近的自由性 D. Gross, H. Politzer, F. Wilczek (1973)

Quantum ChromoDynamics

閉じ込め

クォーク, グルーオンは 低エネルギーでの自由度ではない

パリオン (陽子, 中性子, …) メソン (パイオン,…)

カイラル対称性 = 質量ゼロのDirac粒子の持つ対称性

カイラル対称性の自発的破れ

・
パイオン: Nambu-Goldstoneボソン~140 MeV

Y. Nambu, spontaneous symmetry breaking

Quarkyonicって何?

QUARKYONC McLerran and Pisarski (2007)

Quark + Baryonic

高密度QCDのスケール

• $\Lambda_{
m QCD}$:QCDの持つスケール μ:化学ポテンシャル $m_D: クォークによる遮蔽スケール$ Quarkyonic 極限 高密度: $\Lambda_{\rm QCD}/\mu \rightarrow 0$ 閉じ込め: $m_D / \Lambda_{\rm QCD} \rightarrow 0$

Quarkyonic 極限 高密度: $\Lambda_{\rm QCD}/\mu \rightarrow 0$ 閉じ込め: $m_D/\Lambda_{\rm QCD} \rightarrow 0$ 原子核物質 = 低密度閉じ込め物質 Quarkyonic 物質 = 高密度閉じ込め物質 クォーク物質 = 高密度非閉じ込め物質

Quarkyonic 極限 高密度: $\Lambda_{QCD}/\mu \rightarrow 0$ 閉じ込め: $m_D/\Lambda_{QCD} \rightarrow 0$

この極限は可能か? Yes, if N_c→∞

Outine

• 導入

 簡単なレビュー: large-N_c QCD • QCD 相図 at large-Nc • Quarkyonic相 カイラル対称性について ・まとめ

Large-N_c QCD 't Hooft (1974)

Large-Nc QCD <u>'t Hooft (1974)</u> SU(3)ゲージ理論、結合定数: $\frac{g}{\sqrt{N_c}}$ 拡張: SU(3) → SU(N_c) クォーク グルーオン 場 基本表現 随伴表現 カラー N_{c}^{2} 8-1 \mathcal{N}_{c}

Large-N_c QCD $N_c \gg N_f$ グルーオン $\sim N_c^2$ ーク $\sim N_c$

ullet

• •

Large-Nc QCD

クォークループ

内線のクォークは高次の寄与.

Large-Nc QCD

メソン クォーク-反クォークペア

> 相互作用:弱い $\sim \frac{1}{N_c}$ 状態の数=無限大

Large-N_c QCD バリオン Witten(1979)

クォークは平均場中を運動 $M_N \sim N_c \Lambda_{\rm QCD}$

Large-N_c QCD 相互作用

 $\sim N_c$

 $\sim N_{c}^{0}$

 $\left(\frac{1}{\sqrt{N_c}}\right)^2 \times N_c^2 \sim N_c$

長距離

NN相互作用

 $\left(\frac{1}{\sqrt{N_c}}\right)^2 \times N_c \sim N_c^0$

相互作用が強すぎ? Dichotomous Nucleon? diquarks + an isolate quark YH, Kojo, McLerran and Pisarski (2010)

まとめ: Large-Nc

Large-Nc は良い近似か?

例えば,

Okubo-Zweig-lizuka rule

エキゾチックハドロンがほとんどない

Lattice QCD

Bringoltz and Teper: PLB628,113(2005), PRD73,014517(2006)

Large-Ncの相図

Quarkyonic領域 $m_D \ll \Lambda_{\rm QCD} \ll \mu$

$$= \bigcirc = \sim \mu^2 \left(\frac{1}{\sqrt{N_c}}\right)^2 \sim \mu^2 N_c^{-1} \sim m_D^2$$

 $\Lambda_{\rm QCD} \ll \mu \ll \Lambda_{\rm QCD} \sqrt{N_c}$

Quarkyonic相 ハドロン相

1

Quarkyonic 相

Large-N_c での相図

McLerran and Pisarski (2007)

Andronic, Blaschke, Braun-Munzinger, Cleymans, Fukushima, McLerran, Oeschler, Pisarski, Redlich, Sasaki, Satz and Stachel ('09)

 $e^{(\mu_B - M_B)/T} = 0$ if $\mu_B < M_B$

Large-N_c での相図

McLerran and Pisarski (2007)

Large-Nc での相図

McLerran and Pisarski (2007) $\sim N_c^2 \langle N_B \rangle \neq 0$ $\sim N_c^{3/2} \Lambda_{QCD}$ $\sim N_c^0$ $\sim N_c$ $\langle N_B \rangle \neq 0$ $\langle N_B \rangle = 0$ μ_B M_B $\sim g^2 \mu^2 \sim \Lambda_{\rm QCD}^2 \frac{1}{N_c} \frac{\mu^2}{\Lambda_{\rm QCD}^2}$ $\mu = \mu_B / N_c$

Large-N_c での相図

McLerran and Pisarski (2007)

Quarkyonic物質 McLerran and Pisarski (2007)

 p_z

 $p_T = p_x, p_y$

クォークのフェルミ海

励起はメソン的, バリオン的

Quark + Baryonic = Quarkyonic

カイラル対称性は?

模型による解析

PNJL模型 NJL 模型 + Polyakovループポテンシャル

模型による解析

-般化された 't Hooft模型

Glozman and Wagenbrunn('08), Glozman('09)

Glozman and Wagenbrunn, Phys. Rev. D77 054027 (2008)

 $\left(\begin{array}{c} 0.01 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.05 \\ 0.1 \\ 0.15 \\ 0.15 \\ 0.2 \\ 0.15 \\ 0.2 \\ 0.2 \\ 0.15 \\ 0.2 \\ 0.$

閉じ込めポテンシャル
$$V(p) = \frac{8\pi\sigma}{(p^2 + \mu_{\rm IR}^2)^2}$$

模型による解析は カイラル対称性の回復を示唆

非等方的な凝縮の可能性は?

可能なペアリングパターン

フェルミ面近傍を考える

 $\frac{P_T}{P_z} \sim \frac{\Lambda_{\rm QCD}}{u} \ll 1$

横成分は無視できる

クォーク: effectively 1+1D グルーオン: 3+1D グルーオンの横成分を積分すると, 1+1D次元の有効模型に.

Density Wave Type

Exciton Type

 $p_T = p_x, p_y$

Quarkyonic chiral spirals

 \mathcal{Z}

T. Kojo, Y.H., L. McLerran, and R. Pisarski (2009)

cf. Quarkyonic matter in 1+1D, T. Kojo, 1106.2187 [hep-ph]

非均一凝縮が実現

 $\langle \overline{\psi}\psi\rangle = C\cos(2\mu z)$ $\langle \overline{\psi}\gamma^0\gamma^3\psi\rangle = C\sin(2\mu z)$ C=const

Quarkyonic Chiral Spirals

 $\langle \overline{\psi} \psi \rangle$

1270,3%

カイラル対称性: 局所的な破れ 大域的に回復

バリオン数は空間的に均一

Exciton type

Density wave type

カイラル v.s. 閉じ込め

カイラル対称性を元にした相図

閉じ込めを元にした相図

cf. N_cとN_fが両方大きい時の相図 YH, R. Pisarski, and L McLerran (2008)

まとの **Quarkyonic**領域 $m_D \ll \Lambda_{\rm QCD} \ll \mu$ 高密度,閉じ込め バルク: $P \sim N_c \mu^4$ クォーク物質的 励起:メソン的、バリオン的 カイラル対称性 **Quarkyonic chiral spirals** 局所的に対称性が破れて、大局的に回復 マルチパッチの構成問題 \Rightarrow Kojo, Pisarski and Tsvelik Phys.Rev. D82 (2010) 074015, Kojo, YH, Fukushima, McLerran and Pisarski, 1107.2124