PARTICLE-ROTOR MODEL を用いた ³¹Ne のクーロン分解の解析

(Coulomb dissociation of ³¹Ne with Particle-Rotor Model)

2011年8月20日(土) 浦田靖子 萩野浩一 佐川弘幸* 東北大学 原子核理論研究室 会津大学*

中性子過剰核の性質

○ ハロー構造

芯核に弱く束縛された I,2 個の valence 中性子が薄く広がって いる。 valence

中性子

▶ ¹¹Li ,¹¹Be , ¹⁴Be, ⁶He, ¹⁹C など

波動関数が広がってハローを構成するのは、 遠心ポテンシャルが小さい s または p 軌道

³¹Neのクーロン分解反応の実験

理研RIBFで³¹Ne について大きい
クーロン分解反応の断面積が測定された。
(T.Nakamura, et al., PRL103, 262501 (2009))

→ ソフトEI 励起

▶³¹Ne はハロー構造

○ 球形の殻模型で下から順に中性子を詰めて
いくと、21番目の中性子は f_{7/2} に入る。

▶³¹Ne の変形

クーロン分解反応断面積

20

 $2p_{3/2}$ $f_{7/2}$

Id.2s

Ιp

ls

particle-rotor model による、³¹Ne の基底状態の構造の議論

PARTICLE-ROTOR MODEL

- ○³¹Ne:芯核(³⁰Ne)+Ⅰ中性子
 - 芯核に軸対称な四重極変形を仮定:

 $R_c(\hat{\mathbf{r}}_{cn}) = R_0(1 + \beta_2 Y_{20}(\hat{\mathbf{r}}_{cn}) + \cdots)$

変形した Woods-Saxon ポテンシャル:

$$f(r, \hat{\mathbf{r}}_{cn}) = \frac{V_0}{1 + \exp[(r - R_0 - R_0 \beta_2 Y_{20}(\hat{\mathbf{r}}_{cn}))/a]}$$

$$\cong f(r + V_2(r) Y_{20}(\hat{\mathbf{r}}_{cn})$$

$$f(r) = \frac{V_0}{1 + \exp[(r - R_0)/a]}, R_0 = r_0 A^{\frac{1}{3}}, V_2(r) = -R_0 \beta_2 \frac{df(r)}{dr}$$

PARTICLE-ROTOR MODEL

 \rightarrow エネルギー固有値 E,波動関数 Ψ_{IM}

結果 : 基底状態の波動関数の構成要素の確率と **B(E1)**の、芯核の励起エネルギーによる変化 ^β₂=0.2, band head : I^T=(3/2)⁻ B(E1)=0.763, B(E1)=0.758 (e²fm²) B(E1)=0.482, B(E1)=0.412 (e²fm²)

左右ともに S_n=0.3(MeV)

実験値は、S_n=0.29±1.64(MeV)

まとめ

◆particle-rotor model を用いて芯核の励起エネルギーを考慮することに より、³¹Ne の基底状態の構造を議論した。

◆クーロン分解反応でのEI遷移の断面積σ(EI)を議論する場合、芯核の励起エネルギーを考慮することが重要である。

ľπ	支配的な軌道	β_2
(3/2)-	P _{3/2}	β ₂ ∼0.25
(1/2)+	s _{1/2}	β₂ ~0.95
(1/2)+	s _{1/2}	$\beta_2 \sim -0.35$

→例えば ³³Mg (N=21,A=12): 魔法数の破れの指摘 (R.Kanungo et al., Phys.Lett.B 685, 253 (2010))

ご清聴ありがとうございました。