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Low-energy heavy-ion fusion reactions are governed by quantum tunneling through the
Coulomb barrier formed by the strong cancellation of the repulsive Coulomb force with the
attractive nuclear interaction between the colliding nuclei. Extensive experimental as well as
theoretical studies have revealed that fusion reactions are strongly influenced by couplings
of the relative motion of the colliding nuclei to several nuclear intrinsic motions. Heavy-ion
subbarrier fusion reactions thus provide a good opportunity to address the general problem
of quantum tunneling in the presence of couplings, which has been a popular subject in
recent decades in many branches of physics and chemistry. Here, we review theoretical
aspects of heavy-ion subbarrier fusion reactions from the viewpoint of quantum tunneling in
systems with many degrees of freedom. Particular emphases are put on the coupled-channels
approach to fusion reactions and the barrier distribution representation for multichannel
penetrability. We also discuss an application of the barrier distribution method to elucide
the mechanism of the dissociative adsorption of He molecules in surface science.

Subject Index: 062,211,223,226,330
§1. Introduction

Quantum mechanics is indispensable in understanding microscopic systems such
as atoms, molecules, and atomic nuclei. One of its fundamental aspects is quantum
tunneling, where a particle penetrates into a classically forbidden region. This is a
wave phenomenon and is frequently encountered in diverse processes in physics and
chemistry.

The importance of quantum tunneling has been recognized since the birth of
quantum mechanics. For instance, it was as early as 1928 that Gamow, and inde-
pendently Gurney and Condon, applied quantum tunneling to a decays of atomic
nuclei and successfully explained the systematics of the experimental half-lives of
radioactive nuclei.!):2)

In many applications of quantum tunneling, one only considers the penetration
of a one-dimensional potential barrier, or a barrier with a single variable. In gen-
eral, however, a particle which penetrates a potential barrier is never isolated but
interacts with its surroundings or environment, resulting in modification in its be-
havior. Moreover, when the particle is a composite particle, quantum tunneling has
to be discussed from a many-particle point of view. Quantum tunneling therefore
inevitably takes place in reality in a multidimensional space. This problem was first
addressed by Kapur and Peierls in 1937.3) Their theory has been further developed
by, for example, Banks et al.,¥ Gervais and Sakita,”) Brink et al.,) Schmid,” and
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Fig. 1. Internucleus potential between '®O and '**Sm nuclei as a function of the relative distance.
The dotted and dashed lines are the Coulomb and nuclear potentials, respectively, while the
solid line denotes the total potential. V;, and R, are the height and position of the Coulomb
barrier, respectively. Riouch is the touching radius at which the projectile and target nuclei start
overlapping significantly with each other.

Takada and Nakamura.%)

When quantum tunneling occurs in a complex system, such as the trapped flux
in a superconducting quantum interference device (SQUID) ring,”) the tunneling
variable couples to a large number of other degrees of freedom. In such systems, the
environmental degrees of freedom more or less reveal a dissipative character. Quan-
tum tunneling under the influence of dissipative environments plays an important
role and is a fundamental problem in many fields of physics and chemistry. This
problem has been studied in detail by Caldeira and Leggett.'9) Their seminal work
has stimulated many experimental and theoretical works, and has made quantum
tunneling in systems with many degrees of freedom a topic of immense interest during
recent decades.!)

In nuclear physics, one of the typical examples of tunneling phenomena is the
heavy-ion fusion reaction at energies near and below the Coulomb barrier.!?):13) Fu-
sion is defined as a reaction in which two separate nuclei combine together to form a
compound nucleus. In order for a fusion reaction to take place, the relative motion
between the colliding nuclei has to overcome the Coulomb barrier formed by the
strong cancellation between the long-range repulsive Coulomb and short-range at-
tractive nuclear forces (as a typical example, Fig. 1 shows the internucleus potential
between 00 and '44Sm nuclei as a function of the relative distance). Unless under
extreme conditions, it is reasonable to assume that atomic nuclei are isolated sys-
tems and the couplings to external environments can be neglected. Nevertheless, one
can still consider intrinsic environments. The whole spectra of excited states of the
target and projectile nuclei (as well as several types of nucleon transfer processes)
are populated in a complex way during fusion reactions. They act as environments
to which the relative motion between the colliding nuclei couples. In fact, it has
by now been well established that cross sections of heavy-ion fusion reactions are
substantially enhanced owing to couplings to nuclear intrinsic degrees of freedom at
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energies below the Coulomb barrier as compared with the predictions of a simple po-
tential model.'21®) Heavy-ion subbarrier fusion reactions thus make good examples
of environment-assisted tunneling phenomena.

Theoretically, the standard way to address the effects of the couplings between
the relative motion and nuclear intrinsic degrees of freedom on fusion reactions is to
numerically solve the coupled-channels equations, which include all the relevant chan-
nels. In the eigenchannel representation of coupled-channels equations, the effects
of channel coupling can be interpreted in terms of the distribution of fusion barri-
ers.!3):1921) Tn this representation, the fusion cross section is given by a weighted
sum of the fusion cross sections for each eigenbarrier. The eigenbarriers lower than
the original barrier are responsible for the enhancement of the fusion cross section
at energies below the Coulomb barrier. On the basis of this idea, Rowley et al. have
proposed a method to extract barrier distributions directly from experimental fusion
excitation functions by taking the second derivative of the product of the fusion cross
section and the center of mass energy Forp,s with respect to E, i.e., d?>(Eogs)/dE?
22) This method was tested against high-precision experimental data of fusion cross
sections soon after it was proposed.??) The extracted fusion barrier distributions
were sensitive to the effects of channel couplings and provided a much clearer way of
understanding their effects on the fusion process than the fusion excitation functions
themselves. It is now well recognized that the barrier distribution approach is a
standard tool for heavy-ion subbarrier fusion reactions.'3)-18)

The aim of this paper is to review theoretical aspects of heavy-ion subbarrier
fusion reactions from the viewpoint of the quantum tunneling of composite parti-
cles. To this end, we mainly base our discussions on the coupled-channels approach.
Earlier reviews on the subbarrier fusion reactions can be found in Refs. 12)-16).
See also Refs. 24) and 25) for reviews on subbarrier fusion reactions of radioactive
nuclei, and Refs. 26) and 27) for reviews on fusion reactions relevant to the synthesis
of superheavy elements, neither of which we cover in this article.

The paper is organized as follows. We will first discuss in the next section a po-
tential model approach to heavy-ion fusion reactions. This is the simplest approach
to fusion reactions, in which only elastic scattering and fusion are assumed to occur.
This approach is adequate for light systems, but for fusion with a medium-heavy
or heavy target nucleus the effects of nuclear excitations during fusion start playing
an important role. In §3, we will discuss the effect of such a nuclear structure on
heavy-ion fusion reactions. To this end, we will introduce and detail the coupled-
channels formalism, which takes into account the inelastic scattering and transfer
processes during fusion reactions. In §4, light will be shed on the fusion barrier
distribution representation of the fusion cross section defined as d?(Eog,)/dE?. Tt
is known that this approach is exact when the excitation energy of the intrinsic mo-
tion is zero, but we will demonstrate that one can also generalize it unambiguously
using the eigenchannel approach to the case when the excitation energy is finite. In
85, we will discuss the present status of our understanding of deep-subbarrier fusion
reactions. At these energies, fusion cross sections have been shown to be suppressed
compared with the values obtained by standard coupled-channels calculations. This
phenomenon may be related to dissipative quantum tunneling, that is, an irreversible
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coupling to intrinsic degrees of freedom. In §6, we will discuss an application of the
barrier distribution method to surface physics, more specifically, the effect of rota-
tional excitations on the dissociative adsorption process of Hy molecules. We will
then summarize the paper in §7.

§2. One-dimensional potential model

2.1. Ion-ion potential

Theoretically, the simplest approach to heavy-ion fusion reactions is to use the
one-dimensional potential model where both the projectile and the target are as-
sumed to be structureless. The potential between the projectile and the target is
given by a function of the relative distance r between them. It consists of two parts,
that is,

V(r) = Viv(r) + Ve (r), (21)

where V() is the nuclear potential and Vi (r) is the Coulomb potential, given by

2

Volr) = Z271C (22)
in the outside region where the projectile and target nuclei do not significantly over-
lap with each other. Figure 1 shows a typical potential V(r) for the s-wave scat-
tering of the 150 + '4Sm reaction. The dotted and dashed lines are the nuclear
and Coulomb potentials, respectively, while the total potential V(r) is denoted by
the solid line. One can see that a potential barrier appears owing to the strong can-
cellation between the short-range attractive nuclear interaction and the long-range
repulsive Coulomb force. This potential barrier is referred to as the Coulomb bar-
rier and has to be overcome in order for the fusion reaction to take place. Riouch
in the figure is the touching radius, at which the projectile and target nuclei begin
overlapping considerably. One can see that the Coulomb barrier is located outside
the touching radius.

There are several ways to estimate the nuclear potential Vi (7). One standard
method is to fold a nucleon-nucleon interaction with the projectile and target den-
sities.28) The direct part of the nuclear potential in this double-folding procedure is
given by

VN(T‘) = /d’l"ld’r‘g UNN(T'Q —7ry — T’)pp(’l“l)pT(’r‘Q), (23)

where vy is the effective nucleon-nucleon interaction, and pp and pr are the densi-
ties of the projectile and target, respectively. The double-folding potential is in gen-
eral a nonlocal potential owing to the antisymmetrization effect of nucleons. Usually,
either a zero-range approximation?®:29 or a local momentum approximation3?-34)
is employed in order to treat the nonlocality of the potential.

A phenomenological nuclear potential has also been employed. For instance, the

Woods-Saxon form
Vo

1+ exp[(r — Ro)/a]’

Vn(r) = (2-4)
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with

Vo = 16myRa, (2:5)

Ro = Rp + Ry, (2:6)

R; =1.20A)% —0.09 fm,  (i=P,T) (2:7)

R = RpRr/(Rp + Rr), (2:8)

~ = 0.95 [1—1.8 (NPA_ ZP> (NTA_ ZT)] MeV fm~2, (2:9)

P T
1a =117 [1 +0.53 (A;l/?’ + A;l/?’)} fm~L, (2:10)

has been widely used, where the parameters were determined from a least-squares
fit to the experimental data of heavy-ion elastic scattering.3?)-36)

A nuclear potential thus constructed has been successful in reproducing exper-
imental angular distributions of elastic and inelastic scattering for many systems.
Moreover, the empirical value of the surface diffuseness parameter, a ~ 0.63 fm, is
consistent with a double-folding potential. Recently, the value of the surface diffuse-
ness parameter has been determined unambiguously using heavy-ion quasi-elastic
scattering at deep-subbarrier energies.?”):38) Tt has been confirmed that the experi-
mental data are consistent with a value of around a ~ 0.63 fm.3®)41)

In marked contrast, recent experimental data for heavy-ion subbarrier fusion re-
actions suggest that a much larger value of the surface diffuseness parameter, ranging
from 0.75 to 1.5 fm, is required to fit the data.!®42)46) The Woods-Saxon potential
which fits elastic scattering overestimates fusion cross sections at energies both above
and below the Coulomb barrier, having an inconsistent energy dependence with the
experimental fusion excitation function. The reason for the large discrepancies in
the diffuseness parameters extracted from scattering and fusion analyses has not yet
been fully understood. However, it is probably the case that the double-folding pro-
cedure is valid only in the surface region, while several dynamical effects come into
play in the inner part, where fusion is sensitive to.

We summarize the relation between the surface diffuseness parameter a of a
nuclear potential and the parameters of the Coulomb barrier, that is, the curva-
ture, the barrier height, and the barrier position in Appendix A for exponential and
Woods-Saxon potentials.

2.2. Fusion cross sections

In the potential model, the internucleus potential, V' (r), is supplemented by an
imaginary part, —iW(r), which mocks up the formation of a compound nucleus.
One then solves the Schrodinger equation

n? d? 11+ 1)h?

—@ﬁ““/(?")—ZW(T)—F - F ’LL[(’I“):O (211)

2ur?

for each partial wave [, where p is the reduced mass of the system, with the boundary
conditions of

w(r) ~ ', r— 0, (2:12)
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=H ) (kr) - S H P (kr),  r— o (2:13)

Here, H, l(+) and H. l(_) are the outgoing and incoming Coulomb wave functions, respec-
tively. S; is the nuclear S-matrix and k = \/2uE/h? is the wave number associated
with the energy E.

If the imaginary part of the potential, W (r), is confined well inside the Coulomb
barrier, one can regard the total absorption cross section as the fusion cross section,
ie.,

tus(E) ~ Taps(E) = % S @i+1) (18- (2:14)
l

In heavy-ion fusion reactions, instead of imposing the regular boundary condition
at the origin, Eq. (2-12), the so-called incoming wave boundary condition (IWBC),
is often applied without introducing the imaginary part of the potential, W(r).lg)"”)
Under the IWBC, the wave function has the form

— k s " A )
w(r) = e T, exp ( 1 /Tabs ki(r )dr> r < Tabs (2-15)

at a distance smaller than the absorption radius 7,5, which is taken to be inside
the Coulomb barrier. Here, k() is the local wave number for the Ith partial wave,

defined by
2
ka(r) = \/2‘2‘ <E—V(r) - W) (2-16)

The IWBC corresponds to the case where there is strong absorption in the inner re-
gion so that the incoming flux never returns. For heavy-ion fusion reactions, the final
result is not sensitive to the choice of the absorption radius r,1s, and the absorption
radius is often taken to be at the pocket of the potential.*®) With the IWBC, 7;
in Eq. (2-15) is interpreted as the transmission coefficient. Equation (2-14) is then
transformed to

T
otus(B) = 15 ) _(21+ 1)PI(E), (217)
l
where Pj(F) is the penetrability for the [-wave scattering, defined as
P(E)=1-|S> =T, (218)

for the boundary conditions (2-13) and (2-15). The mean angular momentum of the
compound nucleus is evaluated in a similar way as

EY IR+ 1)R(E)
W) = e B DAE)

(2:19)

For a parabolic potential, Wong has derived an analytic expression for fusion cross
sections, Eq. (2-17).*%) We will discuss this in Appendix B.

The IWBC, Eq. (2-15), has two advantages over the regular boundary condition,
Eq. (2-12). The first advantage is that the imaginary part of the nuclear potential is
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Fig. 2. Comparison of experimental fusion cross sections for the **N-+'2C system (left panel) and
1604+1%4Sm system (right panel) with results of the potential model calculations (solid lines).
The height of the Coulomb barrier is around V4, ~ 6.9 and 59 MeV for '*“N+'2C and '0+'%Sm,
respectively. The experimental data are taken from Refs. 50) and 18) for the *N+'2C and
160 41548m reactions, respectively.

not needed, and the number of adjustable parameters can be reduced. The second
point is that the IWBC directly provides the penetrability Pj(F) = \’ﬁ|2 and thus
the round-off error can be avoided in evaluating 1 — |S;|?. This is a crucial point at
energies well below the Coulomb barrier, where 5; is close to unity. Note that the
IWBC does not necessarily correspond to the limit of W (r) — oo, as the quantum
reflection due to W (r) has to be neglected in order to realize it. The IWBC should
thus be regarded as a different model from the regular boundary condition.

2.3. Comparison with experimental data: success and failure of the potential model

Let us now compare the one-dimensional potential model for the heavy-ion fu-
sion reaction with experimental data. Figure 2 shows the experimental excitation
functions of the fusion cross section for N+12C (left panel) and **O+154Sm (right
panel) systems, as well as results of the potential model calculation (solid lines).
One can see that the potential model well reproduces the experimental data for the
lighter system, "N + '2C. On the other hand, the potential model apparently un-
derestimates the fusion cross section for the heavier system, 60 + %4Sm, although
it reproduces the experimental data at energies above the Coulomb barrier, which is
about 59 MeV for this system.

To help understand the origin of the failure of the potential model, Fig. 3 shows
the experimental fusion excitation functions for the 160 4 144.148.154Qy, reactions!®
and a comparison with the potential model (solid line). To remove the trivial target
dependence, data are plotted as a function of the center of mass energy relative to
the barrier height for each system, and the fusion cross sections are divided by the
geometrical factor, WR%. With these prescriptions, the fusion cross sections for the
different systems match each other at energies above the Coulomb barrier, although
one can also consider a more refined prescription.?):52) The barrier height and the
result of the potential model are obtained with the Akyiiz-Winther potential.?®) One
again observes that the experimental fusion cross sections are drastically enhanced
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Fig. 3. Experimental fusion cross sections for 6041441481549 gystems, taken from Ref. 18). In
order to remove the trivial target dependence, the experimental fusion cross sections are divided
by mRZ, where R, is the position of the Coulomb barrier, and the energies are measured with
respect to the barrier height, V}, for each system. The solid line shows the result of the potential
model calculation.

at energies below the Coulomb barrier compared with the prediction of the potential
model. Moreover, one also observes that the degree of enhancement of the fusion
cross section depends strongly on the target nucleus. That is, the enhancement for
the 0 + 154Sm system is several order of magnitude, while that for the 160 +
1449 system is about a factor of four at energies below the Coulomb barrier. This
strong target dependence of fusion cross sections suggests that low-lying collective
excitations play a role, as we will discuss in the next section.

The inadequacy of the potential model has been demonstrated in a more trans-
parent way by Balantekin et al.’3)  Within the semi-classical approximation, the
penetrability for a one-dimensional barrier can be inverted to yield the barrier thick-
ness.’®) Balantekin et al. applied such an inversion formula directly to experimental
fusion cross sections in order to construct an effective internucleus potential. As-
suming a one-dimensional energy-independent local potential, the resultant poten-
tials were unphysically thin for heavy systems, often with a multivalued potential.
This result was also confirmed by the systematic study in Ref. 55). These analyses
have provided clear evidence for the inadequacy of the one-dimensional barrier pass-
ing model for heavy-ion fusion reactions, and has triggered the development of the
coupled-channels approach, which we will discuss in the next section.

In passing, we have recently applied the inversion procedure in a modified way
to determine the lowest potential barrier among the distributed barriers due to the
effects of channel coupling.’®) The extracted potential for 160 + 208Pb scattering is
well behaved, indicating that the channel coupling indeed plays an essential role in
subbarrier fusion reactions.
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Fig. 4. Experimental low-lying spectra of 4%148:1549m nuclei.

§3. Coupled-channels formalism for heavy-ion fusion reactions

3.1. Effects of nuclear structure on subbarrier fusion reactions

The strong target dependence of subbarrier fusion cross sections shown in Fig. 3
suggests that the enhancement of fusion cross sections is due to low-lying collective
excitations of the colliding nuclei during fusion. The low-lying excited states in
even-even nuclei are collective states and strongly reflect the pairing correlation and
shell structure. They are thus strongly coupled to the ground state and also have
strong mass number and atomic number dependences. As an example, the low-lying
spectra are shown in Fig. 4 for 144148:154Gy  The ¥4Sm nucleus is close to the
(sub-)shell closures (Z=64 and N = 82) and is characterized by a strong octupole
vibration. '*Sm, on the other hand, is a well-deformed nucleus and has a well-
developed ground-state rotational band. 8Sm is a transitional nucleus, and there
exists a soft quadrupole vibration in the low-lying spectrum. One can clearly see
that there is a strong correlation between the degree of enhancement of the fusion
cross sections shown in Fig. 3 and, for example, the energy of the first 27 state.

In addition to the low-lying collective excitations, there are many other modes
of excitation in atomic nuclei. Among them, noncollective excitations couple only
weakly to the ground state and usually they do not significantly affect heavy-ion fu-
sion reactions, even though the number of noncollective states is large.’”) Couplings
to giant resonances are relatively strong owing to their collective character. However,
since their excitation energies are relatively high and also are smooth functions of
the mass number,?®) 9 their effects can be effectively incorporated in the choice of
internuclear potential through the adiabatic potential normalization (see the next
section).

The effect of rotational excitations of a heavy deformed nucleus can be easily
taken into account using the orientation average formula.!”):21):49).61)-63) For an ax-
ially symmetric target nucleus, fusion cross sections are computed with this formula
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Fig. 5. (Left panel) Orientation dependence of fusion potential for the '*0+'**Sm reaction. The
solid and dashed lines are the potentials when the orientation of the deformed '**Sm target is
0 = 0 and 7/2, respectively. The dotted line denotes the potential when the deformation of
1549m is not taken into account. (Right panel) Fusion cross sections for the '50+'5*Sm reaction.
The dashed line is the result of the potential model calculation shown in Fig. 3, while the solid
line is obtained by taking into account the deformation of the **Sm nucleus with Eq. (3-1).
The experimental data are taken from Ref. 18).

as

1
ot ) = /0 d(c0s 0) s B2 0), (31)

where 6 is the angle between the symmetry axis and the beam direction. og,s(F;0)
is the fusion cross section for a fized orientation angle, §. This is obtained with, for
example, a deformed Woods-Saxon potential,

%
~ 1+exp[(r — Ro — RyBaYao(0) — RrfaYao(0))/a]’

which can be constructed by changing the target radius Rp in the Woods-Saxon
potential, Eq. (2:4), to R — Ry (1+ B2Y20(0) + BaYao(0)). See Ref. 64) for a recent
application of this formula to the fusion of massive systems, in which the formula is
combined with classical Langevin calculations.

The left panel of Fig. 5 shows the potential for the 80+154Sm reaction obtained
with the deformation parameters of So = 0.306 and 84 = 0.05. The deformation of
the Coulomb potential is also taken into account (see §3.4 for details). The solid line
shows the potential for # = 0. For this orientation angle, the potential is lowered
by the deformation effect as compared with the spherical potential shown by the
dotted line, because the attractive nuclear interaction is active from relatively large
values of r. The opposite happens when 6 = 7/2 as shown by the dashed line. The
potential is distributed between the solid and dashed lines according to the value
of the orientation angle, 8. The solid line in the right panel of Fig. 5 shows the
fusion cross sections obtained by averaging the contributions of all the orientation
angles through Eq. (3-1). Since the tunneling probability has an exponentially strong
dependence on the barrier height, the fusion cross sections are significantly enhanced
for the orientations that yield a lower barrier than the spherical case. It is remarkable
that this simple calculation accounts well for the experimental enhancement of fusion

Vn(r,0) = (3-2)
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cross sections at subbarrier energies. Evidently, the effects of the nuclear structure
significantly enhance fusion cross sections at energies below the Coulomb barrier,
which makes fusion reactions an interesting probe for nuclear structures.

3.2. Coupled-channels equations with full angular momentum coupling

The effects of the nuclear structure can be taken into account in a more quantal
way using the coupled-channels method. In order to formulate the coupled-channels
method, consider a collision between two nuclei in the presence of the coupling of the
relative motion, r = (r,7), to a nuclear intrinsic motion £&. We assume the following
Hamiltonian for this system:

2
H(r,€) = —ZMW LV () + Ho() + Veoup(r.€), (3:3)

where Hy(€) and Veoup(T, §) are the intrinsic and coupling Hamiltonians, respectively.
In general, the intrinsic degree of freedom & has a finite spin. We therefore expand
the coupling Hamiltonian in multipoles as

coup ’I" 5 Zf)\ Y)\ (5) (34)

A>0

Here, Y)(7) are the spherical harmonics and T)(&) are the spherical tensors con-
structed from the intrinsic coordinate. The dot indicates a scalar product. The sum
is taken over all values of A except for A = 0, which is already included in the bare
potential, V (r).

For a given total angular momentum J and its z component M, one can define
the channel wave functions as

(#E|(adD)IM) = > (ImyIm| T M) Yo, (#)parm, (), (3:5)

my,myp

where [ and [ are the orbital and intrinsic angular momenta, respectively. @arm,; ()
are the wave functions of the intrinsic motion, which obey

Hﬁ(g)@alml (f) = €al Palm; (5) (3'6)

Here, o denotes any quantum number apart from the angular momentum. Expand-
ing the total wave function with the channel wave functions as

Ui (r)
W (r,€) = ) —LE (g (alD) T M), (37)
a,l, T "
the coupled-channels equations for uil ;(r) are obtained as

B d? 11+ 1)k

u’
2 dr? T o +V(r)-E+ Gal] unr (7 /Zl,:p etz 1 (T g (1) = 0,
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where the coupling matrix elements V7 all:a/l! /() are given asb?)
Vit () = (D) T M| Vooup (1, €) |(@'V'I') T M), (39)
= Z ) B ) UMAN ) || T [/ T)
J I 1
X { N\ T } . (3-10)

Note that these matrix elements are independent of M.

For the sake of simplicity of notation, in the following let us introduce a simplified
notation, n = {«,[, I}, and suppress the index J. The coupled-channels equation
(3-8) then becomes,

[Wf I (L + 1)1

—a 79 - F n n nn’ Uy - 11
o dr? o2 +V(r) +e€ ]u —l—ZV =0. (3-11)

These coupled-channels equations are solved with the IWBC of

k T
Un (1) ~ : ( ] ’7;;{% exp <—z/ kn(r’)dr’> , r<Tas (312)
n Tabs
~ .
= H} (k)00 — #%Mﬁ%m r—oo  (3:13)

where n; denotes the entrance channel. The local wave number k,(r) is defined by

k() = \/ 2 (E gyl DR V<r>), (3:14)

2ur?

whereas k, = k,(r = o00) = \/2u(E — €,)/h?. Once the transmission coefficients
’7;;{% are obtained, the inclusive penetrability of the Coulomb potential barrier is
given by

Py(E) =) |TomI” (3-15)

n

The fusion cross section is then given by

ors(B) = 75 (2] + D Py(E), (3-16)
J

where we have assumed that the initial intrinsic state has spin zero, I; = 0. This
equation for the fusion cross section is similar to Eq. (2:17) except that the pene-
trability P;(FE) is now influenced by the effects of channel coupling.

3.3.  Iso-centrifugal approximation

The full coupled-channels calculations (3-11) quickly become intricate if many
physical channels are included. The dimension of the resulting coupled-channels
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problem is in general too large for practical purposes. For this reason, the iso-
centrifugal approximation, which is sometimes referred to as the no-Coriolis approx-
imation or the rotating frame approximation, has often been used.21):48), 63),66)-70)
In the iso-centrifugal approximation to the coupled-channels equations, Eq. (3-11),
one first replaces the angular momentum of the relative motion in each channel by
the total angular momentum J, that is,

by + D2 J(J + 1)1
2pur?2 T2

(3-17)

This corresponds to assuming that the change in the orbital angular momentum due
to the excitation of the intrinsic degree of freedom is negligible. Introducing the
weighted average wave function

ar(r) = (=) (J0I0[10)u(r), (3-18)

l

where we have suppressed the index « for simplicity, and using the relation

> (=) 2l+1{i lI, Il, }(zoxou’owomuo)
l

A\
= (21)H<JOI’O|Z’0) (I'0XO|10), (3-19)

one finds that the wave function u(r) obeys the reduced coupled-channels equations

R I+ 1R )
<_2‘ud7"2 + W + V(T) —F + €[> ’LL[(T)
22 +1 _
+> ) 1 )enlDaolero)ur (r) = 0. (3-20)
IS

These are simply the coupled-channels equations for a spin-zero system with the
interaction Hamiltonian given by

Viowp = 3 G =0)- 1= Y 2 me. o)
A A

In solving the reduced coupled-channels equations, similar boundary conditions are
imposed for @y as those for u;y,

ki, -~ "
w) ~ s T (< [ b)), P (322
Tabs

_ kr. -
= § )(kﬂ')dui — kI; Sj]IiH§+)(k]T), r — 00, (3'23)

where k; and kj(r) are defined in the same way as in Eq. (3-14). The fusion cross
section is then given by Eq. (3-16) with the penetrability of

Py(BE) =) |Tit|* (3-24)
I
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Since the reduced coupled-channels equations in the iso-centrifugal approxima-
tion are equivalent to the coupled-channels equations with a spin-zero intrinsic mo-
tion, the complicated angular momentum couplings disappear. A remarkable fact is
that the dimension of the coupled-channels equations is drastically reduced in this
approximation. For example, if one includes four intrinsic states with 2%, 4%, 67,
and 8T together with the ground state in the coupled-channels equations, the origi-
nal equations have 25 dimensions for J > 8, while the dimension is reduced to 5 in
the iso-centrifugal approximation. The validity of the iso-centrifugal approximation
has been well tested for heavy-ion fusion reactions, and it has been concluded that
the iso-centrifugal approximation leads to negligible errors in calculating fusion cross
sections.3)67)

3.4. Coupling to low-lying collective states
3.4.1. Vibrational coupling

Let us now discuss the explicit form of the coupling Hamiltonian Vo for heavy-
ion fusion reactions. We first consider couplings of the relative motion to the 2*-
pole surface vibration of a target nucleus. In the geometrical model of Bohr and
Mottelson, the radius of the vibrating target is parameterized as

R(0,¢) = Ry (1 + ) Y50, ¢)) : (3-25)

I

where Rt is the equivalent sharp surface radius and ., is the surface coordinate of
the target nucleus. To the lowest order, the surface oscillation is approximated by a
harmonic oscillator, and the Hamiltonian for the intrinsic motion is given by

2\ + 1
Hy = hwy, (Z al an. + 5 > . (3-26)
o

Here, hw) are the oscillator quanta and aiu and ay, are the phonon creation and
annihilation operators, respectively. The surface coordinate a, is related to the
phonon creation and annihilation operators by

_ T _\# __B T _\# .
o = ao (al,, + (-)an,) = o (al, + (5)an.) (3-27)
where ap = B\/v2A + 1 is the amplitude of the zero-point motion.”® The defor-
mation parameter By can be estimated from the experimental transition probability
using (see Eq. (3-34) below)

ar  [B(EN)?

A=samV T e

(3-28)
The surface vibration of the target nucleus modifies both the nuclear and Coulomb

interactions between the colliding nuclei. In the collective model, the nuclear inter-

action is assumed to be a function of the separation distance between the vibrating
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surfaces of the colliding nuclei, and is thus given as

VW (r ap,) = Vi <7~ 2 %Y§M(f=)> . (3-29)

m

If the amplitude of the zero-point motion of the vibration is small, one can expand
this equation in terms of oy, and keep only the linear term,

dV
VN, ax,) = Viv(r) — N Z Y5, (7) (3-30)

This approximation is called the linear coupling approximation. The first term of
the right-hand side (r.h.s.) of Eq. (3-30) is the bare nuclear potential in the absence
of the coupling, while the second term is the nuclear component of the coupling
Hamiltonian. Even though the linear coupling approximation does not work well for
heavy-ion fusion reactions,*®)> ™) we employ it in this subsection in order to illustrate
the coupling scheme. In §3.5, we will discuss how the higher order terms can be taken
into account in the coupling matrix.

The Coulomb component of the coupling Hamiltonian is evaluated as follows.
The Coulomb potential between the spherical projectile and the vibrating target is
given by

ZPZT€2 ZpZTe 4’/TZp€ 1
_ ’ /
Vc(’l“)—/d’l“ mPT("') 222)\/4_1@)‘“1&/ ( ) NFL
NA0 !
(3-31)
where pp is the charge density of the target nucleus and @y, is the electric multipole

operator, defined by
Qi = / dr Zpepr(r)rN Yo (7). (3-32)

The first term of the r.h.s. of Eq. (3-31) is the bare Coulomb interaction, and the
second term is the Coulomb component of the coupling Hamiltonian. In obtaining
Eq. (3-31), we have used the formula

1 4T ré ok n
o] = 2 v 1 e Y (), (333)
/\'ﬂ'

and have assumed that the relative coordinate r is larger than the charge radius of
the target nucleus. If we assume a sharp matter distribution for the target nucleus,
the electric multipole operator is given by

3e
Qv = EZTRE\r’Oé,\MAH,,\W, (3-34)

up to the first order of the surface coordinate ay,.
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By combining Egs. (3-30), (3-31), and (3-34), the coupling Hamiltonian is ex-
pressed by

Veoup(r, a2) = fa(r) D cna Yo, (7), (3:35)

up to the first order of avy,. Here, fy(r) is the coupling form factor, given by

Wy 3, R
2 T
dr oA+ 1P e
where the first and second terms are the nuclear and Coulomb coupling form factors,

respectively. Transforming to the rotating frame, the coupling Hamiltonian used in
the iso-centrifugal approximation is then given by (see Eq. (3-21))

(3-36)

2)\4:[-‘ 1](‘)\(7’)04)\0 = \/Bi?f)\(r) (alo + a)\o) . (337)

Note that the coupling form factor f) has the value

ZpZre? 3 R} Rr
Ry) = — - =
A(F) Ry <2)\ +1 Rg‘ Ry

‘/coup (ra Ot)\o) =

(3-38)

at the position of the bare Coulomb barrier, Ry, and the coupling strength is ap-
proximately proportional to the charge product of the colliding nuclei.

In the previous subsection, we showed that the iso-centrifugal approximation
drastically reduces the dimension of the coupled-channels equations. A further re-
duction can be achieved by introducing effective multiphonon channels.59):69) In
general, the multiphonon states of the vibrator have several levels, which are dis-
tinguished from each other by the angular momentum and the seniority.?® For ex-
ample, for the quadrupole surface vibrations, the two-phonon state has three levels
(07,2%,47), which are degenerate in energy in the harmonic limit. The one-phonon

state, |2f> = a£0]0>, couples only to a particular combination of these triplet states,

2= 3 (200110)170) = (a0} (3:39)

1=0,2,4

It is thus sufficient to include this single state in the calculations, instead of three
triplet states. In the same way, one can introduce the n-phonon channel for a

multipolarity A\ as
1

_ T
In) = ﬁ(am)”l()% (3-40)
See Appendix C for the case of two different vibrational modes of excitation (e.g.,
quadrupole and octupole vibrations).
If one truncates the phonon space up to the two-phonon state, the corresponding

coupling matrix is then given by
0 F(r) 0
Hy + ‘/Ycoup = F(T) hwy, \/iF(T) ) (341)
0 V2F(r) 2hwy
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where F(r) is defined as Sy fi(r)/v4m.
The effects of deviations from the harmonic oscillator limit presented in this
subsection on subbarrier fusion reactions have been discussed in Refs. 72) and 73).

3.4.2. Rotational coupling

We next consider couplings to the ground rotational band of a deformed target.
To this end, it is convenient to transform to the body-fixed frame so that the z axis
is along the orientation of the deformed target. The surface coordinate a, is then
transformed to
_ A
a’)\y - Z Dy/u(¢d7 9d7 Xd)aAMIJ (342)
w
where ¢q4, 04, and x4 are the Euler angles which specify the body-fixed frame, and

thus the orientation of the target. If we are particularly interested in the quadrupole
deformation (A=2), the surface coordinates in the body-fixed frame are expressed as

azy = 32 cosy, (3-43)
1

a2 = ag_9g = —=[328in "y, 3-44

22 2-2 \@52 Y ( )

ag1 = as—1 = 0. (3'45)

If we further assume that the deformation is axial symmetric (i.e., v = 0), the
coupling Hamiltonian for the rotational coupling is (see Eq. (3-35))

Veoup(, 0, ¢q) = f2(r) Y _ B2 \/fYQM(Hd, $a) Y, (7). (3-46)
I

In order to obtain this equation, we have used the relation

4
Y*

DE1o(0,0,x) = 0,). (3-47)

The coupling Hamiltonian in the rotating frame is thus given by

‘/coup(r)‘g) = fQ(T)ﬁZE/ZO(H)y (348)

where 6 is the angle between (64, ¢4) and 7, that is, the direction of the orientation of
the target measured from the direction of the relative motion between the colliding
nuclei. Since the wave function for the |10) state in the ground rotational band is
given by |10) = |Y7o), the corresponding coupling matrix is given by

0 F(r) 0
H0+choup = H0+f2(7“),82<Y]/0|Y20‘Y[0> = F(?“) €9 + 27\7/517(7’) gF(T’)
0 SF(r)  Wep 4 205 F(p)
(3-49)

when the rotational band is truncated at the first 41 state. Here, € is the excitation
energy of the first 2% state and F(r) is defined as (3 f2(r)/v47 as in Eq. (3:41).
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One of the main differences between the vibrational (3-41) and rotational (3-49)
couplings is that the latter has a diagonal component that is proportional to the
deformation parameter 2. The diagonal component in the rotational coupling is
referred to as the reorientation effect and has been used in the Coulomb excitation
technique to determine the sign of the deformation parameter.”® Note that the
results of the coupled-channels calculations are independent of the sign of 5o for the
vibrational coupling.

The effects of the v deformation on subbarrier fusion were studied in Ref. 75).
If there is a finite v deformation, the coupling Hamiltonian in the rotating frame
becomes

Veoup(r, 0, 0) = fa(r) <52 cosyY2(0) + \}552 siny (Y22(0, ¢) + Ya_2(0, ¢))>
(3-50)

Higher order deformations can also be taken into account in a similar way as the
quadrupole deformation. For example, if there is an axial symmetric hexadecapole
deformation in addition to a quadrupole deformation, the coupling Hamiltonian be-
comes

Veoup(r,0) = fa(r)B2Ya0(0) + fa(r)BaYao(0), (3-51)

where 34 is the hexadecapole deformation parameter.

3.5. All order couplings

In the previous subsection, for simplicity, we have used the linear coupling ap-
proximation and expanded the coupling Hamiltonian in terms of the deformation
parameter. However, it has been shown that the higher order terms play an impor-
tant role in heavy-ion subbarrier fusion reactions.*®)7):76)-79) These higher order
terms can be evaluated as follows.*®) If we employ the Woods-Saxon potential, Eq.
(2:4), the nuclear coupling Hamiltonian can be generated by changing the target
radius in the potential to a dynamical operator,

Ry — Ry + O, (3-52)

that is,
Vi(r) = V(. 0) Yo (3:53)
N\T AN = — — . .
1+ exp((r — Ro — 0)/a)
For the vibrational coupling, the operator O is given by (see Eq. (3-37))

0= X Rl + ax), (354)

Viar

while for the rotational coupling it is given by (see Egs. (3-2) and (3-48))
O = BoRrYao(0) + BaRrYao(6). (3-55)

The matrix elements of the coupling Hamiltonian can be easily obtained using matrix
algebra.8?) In this algebra, one first looks for the eigenvalues and eigenvectors of the
operator O which satisfy

Ola) = Aalav). (3-56)
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Fig. 6. Barrier penetrability for a two-level problem as a function of energy F in linear (left panel)
and logarithmic (right panel) scales. The solid and dashed lines are the exact solution and the
WKB approximation, respectively.

This is done by numerically diagonalizing the matrix O, whose elements are given
by

A B
Opm = —R On.m—1 + VNOn.m 3-57
o 7(Vmpm—1+ Vo m+1) (3-57)

for the vibrational case and

R 5(21 + 1) (21’ + 1 I 2 I\°
OH’:\/( 4)75 )52RT<0 0 O)
921 + 1)(2I' + 1 I 4 I\?
2PN D g (00 1) (359)

for the rotational case. The nuclear coupling matrix elements are then evaluated as

Vin) = |V (r, 0)lm) — Vi (r)dnm,
= (la)(alm)Vy(r, Aa) = Vv (r)8nm. (3-59)

The last term in this equation is included to avoid the double counting of the diagonal
component.

The computer code CCFULL has been written with this scheme,*®) and has been
used in analyzing recent experimental fusion cross sections for many systems. CCFULL
also includes the second-order terms in the Coulomb coupling for the rotational case,
while it uses the linear coupling approximation for the Coulomb coupling in the
vibrational case.®)

3.6. WKB approximation for multichannel penetrability

Whereas the coupled-channels equations, Eq. (3-20), can be numerically solved,
for example, with the computer code CCFULL once the coupling Hamiltonian has
been set up, it is always useful to have an approximate solution. In the next section,
we will discuss the limit of the zero excitation energy for intrinsic degrees of free-
dom, in which the coupled-channels equations are decoupled. In this subsection, on
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the other hand, we discuss another approximate solution based on the semiclassical
approximation.

The penetrability in the Wentzel, Kramers, and Brillouin (WKB) approximation
is well known for a one dimensional potential V' (z) and is given by

P(E) —exp[ / dx\/?;;

where xy and 27 are the inner and outer turning points satisfying V' (z¢) = V(z1) =
E, respectively. One can also introduce the uniform approximation to take into
account the multiple reflection under the barrier and obtain a formula that is valid
at all energies from below to above the barrier,3!)-8)

1
1+exp [2 fjol dx’ %’;(V(x/) — E)]

(3-60)

P(E) =

(3-61)

It has been shown in Ref. 86) that one can generalize the primitive WKB formula
(3-60) to a multichannel problem as
l>

e

where q(z) = [20(E W (2))/I2]Y2 with Wi (z) = (n|V () + Ho(&) + Veoup (&, £) )
(see Eq. (3-3)). Here, we have discretized the coordinate 2 with a mesh spacing of
Az. For a single-channel problem, Eq. (3-62) is reduced to Eq. (3-60).

Figure 6 shows the result of the multichannel WKB approximation for a two-level
problem given by

war= (1) Vi )=ve (s 8 er(2 1)+ (5 0)

2

@) A : (3-62)

(3-63)

with
Viz) = Voe /2" F(z) = Fye * /%7, (3-64)
The parameters are chosen following Ref. 19) to be V=100 MeV, Fy=3 MeV, and
s = sy =3 fm, which mimic the fusion reaction between two %8Ni nuclei. The

excitation energy ¢ and the mass p are taken to be 2 MeV and 29my, respectively,
where my is the nucleon mass. It is remarkable that the WKB formula (3-62)
reproduces almost perfectly the exact solution at energies well below the barrier.
The WKB formula breaks down at energies around the barrier, as in the single-
channel problem.

The figure also suggests that the penetrability is given by a weighted sum of two
penetrabilities,

P(E) = w1 P(E; M (x)) + we P(E; Aao(x)), (3-65)
where \;(x) are the eigen-potentials, \;(x) = V(z) + [e £ /€2 + 4F(x)?]/2, obtained
by diagonalizing the matrix W (z) given by Eq. (3-63). We will discuss this point in
the next section.
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§4. Barrier distribution representation of multichannel penetrability

4.1. Sudden tunneling limit and barrier distribution

In the limit of vanishing excitation energy for the intrinsic motion (i.e., in the
limit of e; — 0), the reduced coupled-channels equations (3-20) are completely de-
coupled. This limit corresponds to the case where the tunneling occurs much faster
than the intrinsic motion, and is thus referred to as the sudden tunneling limit. In
this limit, the coupling matrix, defined as

22+ 1
47

Vir = ey + Ia(r)(erolTrolero), (4-1)
can be diagonalized independently of r (for simplicity we consider only a single value
of A). See also Eq. (3:63). It is then easy to prove that the fusion cross section is
given as a weighted sum of the cross sections for uncoupled eigenchannels,?!)-87)

otus(E) = > wa ofl (B), (4:2)

(a)

where o, /(E) is the fusion cross section for a potential in the eigenchannel «,
ie, Vo(r) = V(r) + Aa(r). The same relation also holds for quasi-elastic scat-
tering.6%):87):88) Here, A\(r) is the eigenvalue of the coupling matrix (4-1) (when
€ is zero, A\, (r) is simply given by A, - fu(r)). The weight factor w, is given by
wa = |Upa|?, where U is the unitary matrix which diagonalizes Eq. (4-1). Note that
the unitarity of the matrix U leads to the relation that the sum of all the weight
factors, 3, Wa, is unity.2!)

The resultant formula (4-2) in the sudden tunneling limit can be interpreted in
the following way. In the absence of coupling, the incident particle encounters only
the single potential barrier, V(r). When coupling occurs, the bare potential splits
into many barriers. Some of them are lower than the bare potential and some of
them higher. In this picture, the potential barriers are distributed with appropriate
weight factors, we.

The orientation average formula discussed in §3.1 (see Eq. (3-1)) for a deformed
target nucleus can also be obtained from the coupled-channels equations by taking
the sudden tunneling limit.2!) To show this, first note that the coupling Hamiltonian
is diagonal with respect to the orientation angle, 6. If all the members of the ro-
tational band are included in the coupled-channels equations, the eigenstates of the
coupling Hamiltonian matrix then become the same as the angle vector |#) with the
eigenvalue given by the deformed Woods-Saxon potential, Eq. (3-2).21):89.90) The
weight factor in this case is simply given by w(8) = [(8]p1—=0)|* = [Yoo(6)|?.

The physical interpretation of the orientation average formula is that the fusion
reaction takes place so suddenly that the orientation angle is fixed during the fusion
reaction. This is justified because the first 27 state of a heavy deformed nucleus
is small (see Fig. 4), corresponding to a large moment of inertia for the rotational
motion. As the orientation angles are distributed according to the wave function
for the ground state, the fusion cross section can be computed by first fixing the
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Fig. 7. Product of energy F and fusion cross section ofus, Eotus, for the '°0+'%4Sm reaction
obtained with the potential model (left panel). The middle and right panels show the first and
second energy derivatives of Eoy,s, respectively.

orientation angle and then averaging over the orientation angle with the appropriate
weight factor, w(6). The applicability of this formula has been investigated in Ref.
62) in the reactions of a 4Sm target with various projectiles ranging from 2C to
40Ar. Tt has been shown that the formula works well, although the agreement with
the exact coupled-channels calculations, which take into account the finite excitation
energy of the rotational excitation, becomes slightly worse for a large value of the
charge product of the projectile and the target nuclei.

4.2. Fusion barrier distribution

Rowley et al. have proposed a method to directly extract how the barriers are
distributed from the experimental fusion cross sections.'22) In order to illustrate
the method, let us first discuss the classical fusion cross section given by

o) =i (1= 31 ) o5 - ) (43

From this expression, it is clear that the first derivative of Eofﬁs is proportional to

the classical penetrability for a one-dimensional barrier of height V4,

d
B0t (B)) = nR} 0( — Vi) = n} Pu(F), (4:4)

and that the second derivative is proportional to a delta function,

d2
S Bofl(B)] = R 6(E — Vi) (45)
In quantum mechanics, the tunneling effect smears the delta function in Eq.
(4-5). As we have noted in §2.2, an analytic formula for the fusion cross section can
be obtained if one approximates the Coulomb barrier by an inverse parabola, see
Eq. (B-5) in Appendix B. Again, the first derivative of Fog,s is proportional to the
s-wave penetrability for a parabolic barrier,

d 1
—[Eops(E)] = TR?
dE[ fus ()] b 1+exp [—%(E—Vb)]

= 1R? P(E), (4-6)
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Fig. 8. (Left panel) Fusion barrier distribution Dsus(F) = d? (EO'fus)/dE2 for the °0+'%*Sm reac-
tion.'® The solid line is obtained with the orientation average formula, which corresponds to
the solid line in Fig. 5. The dashed lines indicate the contributions from six individual eigen-
barriers (i.e., orientation angles). (Right panel) Fusion barrier distribution for the '*0+'**Sm
reaction.’® The solid line shows the result of the coupled-channels calculations, which take into
account the anharmonic double-phonon excitations of 14*Sm.”: 7%

and the second derivative is proportional to the derivative of the s-wave penetrability,

d? 2 e’ dP(E)
Eotys = ;— 5

a2 o Bl =7l 5o aap =™ g

where © = —27(E — V,)/hf2. As shown in Fig. 7, this function has the following

properties: i) it is symmetric around E = Vj, ii) it is centered at E = V}, iii) its

integral over E is mR?, and iv) it has a relatively narrow width of around In(3 +

V)2 /m ~ 0.56h12.

In the presence of channel couplings, Eq. (4-2) immediately leads to

(47)

d? (a)
Dfus = dE2 [EUfus Zwa dE2 E Otus (E)] (48)

This function has been referred to as the fusion barrier distribution. As an example,
the left panel of Fig. 8 shows the barrier distribution for the '%0+4%4Sm reaction,
whose fusion cross sections have already been shown in Fig. 5. We replace the
integral in Eq. (3-1) with the (Imax + 2)-point Gauss quadrature with I;,x=10. This
corresponds to taking six different orientation angles.?t) The contributions from each
eigenbarrier are shown by the dashed lines in Fig. 8. The solid line is the sum of
all the contributions, which is compared with the experimental data.'®) One can see
that the calculation well reproduces the experimental data. Moreover, this analysis
suggests that 154Sm is a prolately deformed nucleus, since if it were an oblate nucleus,
then lower potential barriers would have larger weights and Dy, would be larger for
smaller E, in contradiction to the experimentally observed barrier distribution.'®)
The fusion barrier distribution has been extracted for many systems, see Ref.
13) and references therein. The extracted barrier distributions were shown to be
sensitive to the effects of channel couplings and have provided a much clearer way of
understanding their effects on the fusion process than the fusion excitation functions
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themselves. These experimental data have thus enabled a detailed study of the ef-
fects of nuclear intrinsic excitations on fusion reactions and have generated renewed
interest in heavy-ion subbarrier fusion reactions. An important point is that the
nature of subbarrier fusion reactions as a tunneling process exponentially amplifies
the effects of the details of the nuclear structure. The fusion barrier distribution
makes these effects even more visible when it is plotted in a linear scale. The sub-
barrier fusion reactions thus offer a novel way of nuclear spectroscopy, which could
be called tunneling-assisted nuclear spectroscopy. As an example, it was recently
applied to elucidate the shape transition and shape coexistence of Ge isotopes.?1)92)
It is worthwhile to also mention that the method of the barrier distribution has been
successfully applied to heavy-ion quasi-elastic scattering.%3):93)

4.3. FEigenchannel representation

As we have discussed in the previous subsection, the barrier distribution repre-
sentation, that is, the second derivative of Foy,, has a clear physical meaning only
if the excitation energy of the intrinsic motion is zero. The concept holds only ap-
proximately when the excitation energy is finite. Nonetheless, this analysis has been
successfully applied to systems with relatively large excitation energies.'®):79):94) For
example, the second derivative of Eog, for the 0 + %4Sm fusion reaction has a
clear double-peak structure (see the right panel of Fig. 8).18)’94) The coupled-
channels calculation also yields a similar double-peak structure of the fusion barrier
distribution, and this structure has been interpreted in terms of the anharmonic
octupole phonon excitations in 44Sm,?):73) whose excitation energy is 1.8 MeV for
the first 3~ state. Also the analysis of the fusion reaction between ®*Ni and 5ONi,
where the excitation energies of quadrupole phonon states are 1.45 and 1.33 MeV,
respectively, shows that the barrier distribution representation depends strongly on
the number of phonon states included in coupled-channels calculations.™ These
analyses suggest that the representation of the fusion process in terms of the second
derivative of Eopg is a powerful method to study the details of the effects of the
nuclear structure, irrespective of the excitation energy of the intrinsic motion.

When the excitation energy of the intrinsic motion is finite, the barrier distribu-
tion can be still defined in terms of the eigenchannels. To illustrate this, first note
that Eq. (3-15) can be expressed as

P(E) = (T'T)nn, (4-9)

using the completeness of the channels n (we have suppressed the index J). We then
introduce the eigenfunctions of the Hermitian operator 77T as

(TTT)| ) = vilw)- (4-10)
Using this basis, the penetrability is given by
P(E) = [oklns)* - i (4-11)
k

When the excitation energies ¢, are all zero, as we have discussed in §4.1, one can
diagonalize the coupling matrix V,,,/(r) with the basis set which is independent of
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Fig. 9. (Left panel) s-wave penetrabilities for the '*0+**Sm reaction. The dotted line is obtained
with the coupled-channels calculations with a single-octupole phonon excitation in 4*Sm at
1.81 MeV with 83 = 0.205. The solid lines show the eigenvalues of the square of the trans-
mission matrix, 77T, defined by Eq. (4-10). The dashed lines denote the penetrabilities of the
eigenbarriers constructed by diagonalizing the coupling matrix at each r. (Right panel) Weight
factors |(¢x|n:)|* defined in Eq. (4-11) as a function of energy.

the radial coordinate r. In this case, the matrix T is diagonal for this basis, and the
weight factor |(¢x|n;)|? is independent of E. Equation (4-11) is a generalization of
this scheme, which is also applicable when the excitation energies are nonzero.

Figure 9 shows the two eigenvalues ~; and the corresponding weight factors
|(¢r|ni)|? as a function of E for a single-phonon coupling calculation for the s-wave
160 4-1448m reaction. To this end, we have taken into account couplings to the single-
octupole phonon state in *4Sm at 1.81 MeV with the deformation parameter of (33
= 0.205. The total probability P(FE), and the penetrability of the two eigenbarriers,
obtained by diagonalizing the coupling matrix V,,,/(r) at each r, are also shown in
the left panel of the figure by the dotted and dashed lines, respectively. One can
see that the two eigenvalues 4 approximately correspond to the penetrability of the
eigenbarriers, and thus the factors |(¢y|n;)|? can be interpreted as the weight factors
for each eigenbarrier. This implies that the fusion cross sections are still given by
Eq. (4-2) even when the excitation energy is finite, except that the eigenbarriers
are now constructed by diagonalizing the coupling matrix at each r. The weight
factors do not vary strongly as a function of energy, suggesting that the concept of
the fusion barrier distribution is still a good approximation even when the excitation
energy of the intrinsic motion is finite. We have already reached the same conclusion
in Ref. 95) using a different method from the one in this subsection. In contrast
to the method in Ref. 95), the method in this subsection is more general since the
applicability is not restricted to a two-level problem.

4.4. Adiabatic potential renormalization

Given that the concept of the fusion barrier distribution still holds even with a
finite excitation energy, it is interesting to investigate how the fusion barrier distri-
bution evolves as the excitation energy is varied. To this end, we carry out coupled-
channels calculations for the 0+144Sm reaction by taking into account the single-
octupole phonon excitation in *4Sm. The solid line in Fig. 10(a) shows the fusion
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Fig. 10. Fusion barrier distribution Ds,s for the 160414489 m reaction with several values of exci-
tation energy, E5—, of the octupole vibration in 1449m. The solid lines are the results of the
coupled-channels calculations, which take into account the single-octupole phonon excitation in
1448m, while the dashed lines are obtained without taking into account the channel coupling
effect. The curvature k{2 of the Coulomb barrier is 4.25 MeV in these calculations.

barrier distribution Dg,s when the excitation energy of the octupole vibration, F5-,
is set to zero. For comparison, the figure also shows the result of the no-coupling
calculation by the dashed line. In this case, the original single barrier splits into two
eigenbarriers with equal weight, one corresponds to the effective channel [07) + [37)
and the other corresponds to |07) — [37). The fusion barrier distribution is slightly
asymmetric since the barrier positions, Rj, are different between the two effective
channels (see Eq. (4:7)).

Figure 10(b) corresponds to the physical case of E3- = 1.81 MeV. In this case,
the barrier distribution still has a clear double-peak structure as in the experimental
data,'®:99) but the lower energy barrier acquires more weight and the barrier dis-
tribution is highly asymmetric. The effective channels are now «|0%) + 3|37) (the
lower energy barrier) and 3|0") — «|37) (the higher energy barrier) with o > 3 > 0.

Figure 10(c) corresponds to the case where the excitation energy is set equal to
the barrier curvature, hf2, which is 4.25 MeV in the present calculations. In this
case, the lower energy barrier has an appreciable weight although the weight factor
for the higher energy barrier is not negligible. When the excitation energy is further
increased, the weight for the lower energy barrier becomes close to unity, as is shown
in Fig. 10(d), and the fusion cross sections are approximately given by

Ufus(E) = Ufus(E; V(T) + )‘O(T))7 (4'12)

where V(1) 4+ Ao(r) is the lowest eigenbarrier (see Eq. (4-2)). Therefore, the main
effect of the coupling to a state with a large excitation energy is to simply introduce
an energy-independent shift of the potential, V' (r) — V(r)+MXo(r). This phenomenon
is called the adiabatic potential renormalization.6)98) Typical examples in nuclear
fusion include the couplings to the octupole vibration in 0 at 6.13 MeV??) and to
giant resonances in general.

In Refs. 97) and 98), it has been argued on the basis of a path integral ap-
proach to multidimensional tunneling that the transition from sudden tunneling to
adiabatic tunneling takes place at an excitation energy around the barrier curvature,
h{2. That is, if the excitation energy is much larger than the barrier curvature, the
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Fig. 11. Fusion cross sections for the **Ni+%Ni and '*O+2°Pb systems as a function of the inci-
dent energy. The experimental data are taken from Refs. 100) and 104). The dotted and dashed
lines are the results of potential model and standard coupled-channels calculations, respectively.
The solid lines denote the result when the hindrance of fusion cross sections at deep-subbarrier
energies is described in the adiabatic model.1%®

channel coupling effect can be well expressed in terms of the adiabatic barrier renor-
malization. The numerical calculations shown in Fig. 10 are consistent with this
criterion.

§5. Fusion at deep-subbarrier energies and dissipative tunneling

Although the coupled-channels approach has been successful for heavy-ion reac-
tions, many new challenges have been recognized in recent years. One of them is the
surface diffuseness anomaly discussed in §2.1. Another challenge, which may also be
related to the surface diffuseness anomaly,®) is the inhibition of fusion cross sections
at deep subbarrier energies. This is a phenomenon found only recently, when fusion
cross sections became measurable for several systems down to extremely low cross
sections up to the level of a few nanobarn (nb).'%971%4) These experimental data
have shown that fusion cross sections systematically fall off much more steeply at
deep-subbarrier energies with decreasing energy compared with the expected energy
dependence of cross sections around the Coulomb barrier. That is, the experimental
fusion cross sections appear to be hindered at deep-subbarrier energies compared
with the standard coupled-channels calculations that reproduce the experimental
data at subbarrier energies, although the fusion cross sections are still enhanced
with respect to the prediction of a single-channel potential model.

Two different models have been proposed so far in order to account for the
deep-subbarrier fusion hindrance. As the first model, assuming the frozen densities
in the overlapping region (i.e., the sudden approximation), Misicu and Esbensen
have introduced a repulsive core to an internucleus potential, which originates from
the Pauli exclusion principle.!9%) See also Ref. 106) for a related publication. The
resultant potential is much shallower than the standard potentials and hinders the
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fusion probability for high partial waves. As the second model, on the other hand,
Ichikawa et al. have proposed an adiabatic approach by assuming the formation of
a neck between the colliding nuclei in the overlap region.197-198) In this model, the
reaction is assumed to take place slowly so that the density distribution has enough
time to adjust to the optimized distribution. In this adiabatic model, the hindrance
of fusion cross sections origninates from the tunneling of a thick one-body potential
due to the neck formation. This model has achieved comparably good reproduction
of the experimental data to the sudden model, as is shown in Fig. 11.

The mechanism for the deep-subbarrier hindrance of fusion cross sections has
not yet been fully understood, as the two different models, in which the origins
of the deep-subbarrier hindrance are considerably different from each other, ac-
count for the experimental data equally well. However, there is a certain conclu-
sion that can be reached by analyzing the threshold behavior in deep-subbarrier
fusion,100),101),109-111) jpdependent of the fusion model.'’®) In Refs. 100),101), and
109), the deep-subbarrier hindrance of fusion cross sections has been analyzed using
the astrophysical S factor. It has been claimed that deep-subbarrier hindrance of
fusion cross sections occurs at the energy at which the astrophysical S factor reaches
its maximum. The authors of Refs. 100),101), and 109) even parameterized the
threshold energy as a function of the charge and mass numbers of the projectile and
target nuclei. The relationship between the threshold for deep-subbarrier hindrance
of fusion cross sections and the maximum of the S factor is not clear physically, and
thus it is not trivial how to justify the identification of the threshold energy with
the maximum of the astrophysical S factor. Nevertheless, it has turned out that the
threshold energy thus obtained closely follows the values of phenomenological inter-
nucleus potentials at the touching configuration.’9 This strongly indicates that the
dynamics that takes place after the colliding nuclei touch each other somehow makes
the astrophysical S factor decrease as the incident energy decreases, leading to the
fusion hindrance phenomenon. Note that the fusion potential is almost the same
between the sudden model and the adiabatic model before the touching (see Fig. 1
in Ref. 110)).

One important aspect of fusion reactions at deep-subbarrier energies is that the
inner turning point of the potential may be located far inside the touching point
of the colliding nuclei (see Fig. 1). After the two nuclei touch each other, many
noncollective excitations of the unified one-body system are activated. As is well
known from the Caldeira-Leggett model, couplings to these excitations lead to en-
ergy dissipation, which inhibits the tunneling probability.!®) The energy dissipation
may also occur before the touching as a consequence of particle transfer processes to
highly excited states in the target nucleus.!*?) The phenomenon of deep-subbarrier
fusion hindrance may therefore be a realization of dissipative quantum tunneling,
which has been extensively studied in many fields of physics and chemistry. A char-
acteristic feature in nuclear fusion, which is absent or may not be important in
dissipative tunneling in other fields, is that the couplings to (internal) environmen-
tal degrees of freedom gradually occur *). That is, before the touching, the fully

*) We thank M. Dasgupta and D.J. Hinde for discussions on this point.
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quantum mechanical coupled-channels approach with couplings to a few collective
states of separate nuclei is adequate, which however gradually loses its validity after
the touching point owing to the dissipative couplings.!®®) This is the region that
the conventional coupled-channels approach does not treat explicitly by introducing
an absorbing potential or by imposing the IWBC. Although it is highly important
to construct a model for nuclear fusion by taking into account the dissipative cou-
plings'08):113),114) ip order to clarify the deep-subbarrier fusion hindrance, it is still
a challenging open problem to do so. To this end, the transition from the exci-
tations of two separate nuclei in the entrance channel, which are included in the
conventional coupled-channels calculations, to molecular excitations (i.e., the exci-
tations of the combined mono-nuclear system) has to be described in a consistent
and smooth manner.!08):115)-117) The development of quantum mechanical versions
of phenomenological classical models for deep inelastic collisions (DICs), such as the
wall and window formulas for nuclear friction,*'8)120) will also be important in this
respect.

§6. Application of barrier distribution method to surface physics

The barrier distribution method discussed in §4 is applicable not only to heavy-
ion subbarrier fusion reactions but also to any multichannel tunneling problem. In
general, the barrier distribution is defined as the first derivative of penetrability with
respect to energy, dP/dE (see Eq. (4:7)).

As an application of the barrier distribution method developed in nuclear physics
to other fields, let us discuss the dissociative adsorption process of diatomic molecules
on a metal surface. When molecular beams are injected on a certain metal, such
as Cu or Pd, diatomic molecules are broken up in the vicinity of the metal sur-
face to form two atoms owing to the molecule-metal interactions before they adhere
to the metal. This process is referred to as dissociative adsorption, and has been
extensively studied in surface science together with the inverse process, that is, as-
sociative desorption.'?!) The adsorption process takes place by quantum tunneling
at low incident energies, as there is a potential barrier between the two phases of
the molecules, i.e., the molecular phase and the breakup phase with two separate
atoms.'21):122) The vibrational and rotational excitations of diatomic molecules play
an important role in dissociative adsorption,!??)7125) as in heavy-ion subbarrier fu-
sion reactions. The coupled-channels method has been utilized to discuss the effects
of the internal excitations of molecules on dissociative adsorption.'26)-133)

In this section, we discuss only the simplest case, that is, the effect of the rota-
tional excitation on dissociative adsorption, while the vibrational degrees of freedom
are assumed to be frozen in the ground state. In contrast to heavy-ion fusion re-
actions, the initial rotational state in the problem of dissociative adsorption is not
necessarily the ground state. The initial rotational state of diatomic molecules in
molecular beams can in fact be selected, and the experimental data of Michelsen et
al.124):125) have indicated that the adsorption probability of Dy molecules on a Cu
surface shows nonmonotonic behavior as a function of the initial rotational state.
That is, at a given incident energy, starting from the initial rotational state L; = 0,
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the adsorption probability first decreases for L; = 5 and then increases for L; = 10
and L; = 14 (see Fig. 9 in Ref. 125)).
In order to explain this behavior, Dino et al. have considered a simple Hamilto-

nian for Hy and Dy molecules given by!29)131)
n? 02 R .2
H(s,0 57 RS L 0 1
(37 ) 2M Hs2 + ( ) + V(Sa )7 (6 )

where s is the one-dimensional reaction path in the two-dimensional potential energy
surface spanned by the molecule-surface distance, Z, and the interatomic distance, r.
The reaction takes place from s = —oo, which corresponds to the approaching phase
of molecules, to s = 400, where the incident molecule has broken up to form two
atoms. The sticking probability to the metal surface is identified as the penetrability
of the potential barrier, V. M in Eq. (6-1) is the mass for the translational motion of
the diatomic molecule given by M = 2m, where m is the mass of the atom (i.e., m =
my for a Hy molecule and m = mp for a Do molecule). 6 is the molecular orientation
angle, where #=0 corresponds to the configuration of the molecule perpendicular to
the surface while § = 7/2 corresponds to the configuration parallel to the surface.
L is the associated angular momentum operator. I (s) is the momentum inertia for
the rotational motion given by

I(s) = prg (1 + feo), (6-2)

where = m/2 and f is a parameter characterizing the s dependence of the inter-
atomic distance r, rg being the interatomic distance for an isolated molecule. The
same parameter « as that in Eq. (6-2) also appears in the potential energy, V (s, 0),
which is parameterized as

V(s,0) = coshE;(as)(l — Bcos6?) 4+ V; cos® 6 - (1 + tanh(as)), (6-3)
= Wo(s) + Va(s)Ya0(0), (6-4)

with
Vos) = Coshb;(as) <1 - ﬁ) + Y11 4 tanh(as)), (6-5)

E, 2 47T 47
Va(s) = cosh2 ) B\/ U —Vi(1 + tanh(as)). (6-6)

The coupled-channels equations for the Hamiltonian (6-1) can be derived in the
same manner as in §3. For scattering with the initial rotational angular momentum
of molecules of L; and its z-component M;, we expand the total wave function as

UMVACH) Z¢LL )Y, (0). (6-7)

Note that the Hamiltonian (6-1) conserves the value of M;, as the coupling potential
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Fig. 12. Potential energy for dissociative adsorption process of Ha molecule on metal surface given
by Eq. (6-4). The parameters are E,=0.536 eV, V1=1.0 eV, a=1.5 A1, 8 = 0.25, 70=0.739 A,
and f = 0.14. The left panel shows the potential for I = 0 as a function of the reaction path
coordinate s for # = 0 (dashed line) and 6 = 7/2 (solid line), where @ is the molecular orientation
angle (/=0 and 6 = w/2 correspond to the configurations with the molecule perpendicular
and parallel to the metal surface, respectively) and L is the associated angular momentum
operator. The spherical part of the potential, Vi(s), is also shown by the dotted line. The right
panel shows the sum of the spherical part of the potential, V(s), and the rotational energy,
Hyot(s) = L(L + 1)i*/2I(s), for three different values of L.

is proportional to Y39(6). The coupled-channels equations then become
[ R? d?>  L(L+1)h?

o1f 4 + 20 + Vo(s) — E] oL, (s)+Va(s) Z<YLMZ- Yool Yirng,) b1 ri(s),

L/
(6-8)
where the matrix element (Y7, |Y20|Y7/as,) is given by

(Y, Yoo Yas,)

e (58 ) (5 ) e

Noting that I(s) — urg for s — —oo and I(s) — 0 for s — oo, these coupled-channels
equations are solved by imposing the boundary conditions of

. [Ter .
QZ)LLZ'(S) = elkLS(sLLZ. — % RLLieflkLS, (8 — —OO) (610)
L

k
= éTLLek

where k, = \/2M(E — e1)/h2 with e, = L(L+1)A?/2ur¢ and k = \/2M E/R2. The

adsorption probability for given values of L; and M; is then obtained as

M = > 1Te . (6-12)
L

(s = 00) (6-11)

By averaging over all possible M;, the total adsorption probability for L; is given by

1
Pr=—— NP 6-13
Li 2Li+1%: LiM; (6-13)

i
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Fig. 13. Results of the coupled-channels calculation for the dissociative adsorption process of Ha
molecules. The left panel shows the adsorption probability, P, while the right panel shows the
barrier distribution, defined as dP/dFE, for several values of the initial angular momenta L; for
the rotational state of the molecule as a function of the initial kinetic energy Fiin.

Let us now solve the coupled-channels equations for Ho molecules. The results
are qualitatively the same for Do molecules. Following Ref. 129), we take E,=0.536
eV, V1=1.0 eV, a=1.5 A=, 8 =0.25, and 79=0.739 A. For the factor f in Eq. (6-2),
we take f = 0.14.1%9) The potential with these parameters is shown in Fig. 12. The
left panel shows the potential energy V(s,0) given by Eq. (6-4) for two different
values of f. For comparison, the figure also shows the spherical part of the potential,
Vo(s). One can see that the barrier is lower for the configuration parallel to the metal
surface (that is, & = 7/2) than for the configuration perpendicular to the surface,
@ = 0. The right panel, on the other hand, shows the sum of the spherical part
of the potential, Vg(s), and the rotational energy, Hyot(s) = L(L + 1)h?/2I(s), for
three different values of L. Because of the s dependence of the rotational moment of

inertia, I(s), the barrier height for the molecules incident from s = —oo, that is, the
difference between the energy at s = 0 and that at s = —o0o, decreases as a function
of L.

The results of the coupled-channels calculations are shown in Fig. 13 for several
values of the initial rotational state, L;, in which the adsorption probability is plotted
as a function of the incident kinetic energy of the molecule, defined as F = Fy;, +
Li(L; + 1)R?/2r3. As has been noted in Refs. 129) and 131), these calculations well
account for the nonmonotonic behavior of the adsorption probability as a function of
L;. The right panel shows the corresponding barrier distribution, dP/dFE, obtained
with the point difference formula with an energy step of 0.03 eV. One can clearly
see different structures for each L;. For L; = 0, the barrier distribution has three
prominent peaks. These peaks are smeared for L; = 4, and at the same time,
the center of mass of the distribution is shifted towards a higher energy, leading
to the decrease in adsorption probability. This is due to the fact that the result
for L; = 4 is actually given by the average over contributions from nine different
M; values. In order to demonstrate this effect, Fig. 14 shows the results of the
single-channel calculations for L; = 2 with three different values of M; and their
average. For comparison, the figure also shows the single-channel calculation for
L; =0 (dotted line). We define the single-channel calculation as that which neglects
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Fig. 14. Results of the single-channel calculation obtained by neglecting all the coupling matrix el-
ements in the coupled-channels equations except for the diagonal component. The left and right
panels show the adsorption probability, P, and the barrier distribution, dP/dFE, respectively.
The dotted lines denote the results when the initial rotational state is at L; = 0. The thin solid,
dot-dashed, and thick solid lines are the results of (L;, M;) = (2,0),(2,1), and (2,2), respec-
tively. The dashed lines with the solid circles show the results for L; = 2 obtained by averaging
all the M, components. The barrier distributions shown in the right panel are multiplied by the
weight factors of 1/5 (for M; = 0) and 2/5 (for M; =1 and 2).

all the coupling terms in the coupled-channels equations (6-8) except for the diagonal
term, L = L’. Because of the properties of the spherical harmonics, the diagonal
term of the coupling potential is attractive for M; = 2, while it is repulsive for
M; =0 and 1 (see Eq. (6-9)). The single peak in the barrier distribution for L; = 0
is then becomes three peaks in the case of L; = 4, shifting the center of mass of
the distribution towards a slightly higher energy (note that —M; gives the same
contribution as M;). With the off-diagonal components of the coupling potential,
the distribution will be further smeared, as in the distribution for L; = 4 shown
in Fig. 13. When the initial angular momentum is further increased, the barrier
distribution starts moving towards lower energies, as seen in the figure for L; = 10
and 14, which enhances the adsorption probability as a consequence. This is mainly
due to the fact that the barrier is lowered for a large value of the rotational state,
L;, as has been shown in Fig. 12.

The barrier distribution representation of the tunneling probability provides a
useful means to understand the underlying dynamics of the dissociative adsorption
process as the shape of the distribution strongly reflects the intrinsic molecular mo-
tions. This is particularly the case when the rotational and vibrational degrees are
taken into account simultaneously.'3?):132) Tt will be an interesting future study to
investigate how the barrier distribution behaves in the presence of rotational excita-
tion together with vibrational excitation.

§7. Summary and outlook
Recent developments in experimental techniques have enabled high-precision

measurements of heavy-ion fusion cross sections. Such high-precision experimental
data have elucidated the mechanism of subbarrier fusion reactions in terms of the
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quantum tunneling of systems with many degrees of freedom. In particular, the
effects of the coupling of the relative motion between the target and projectile nuclei
to their intrinsic excitations have been transparently clarified through the barrier
distribution representation of fusion cross sections.

The effects of channel coupling can be taken into account most naturally with the
coupled-channels method. When the excitation energy of an intrinsic motion coupled
to the relative motion is zero, the concept of the barrier distribution holds exactly.
In this case, quantum tunneling takes place much faster than the intrinsic motion.
The effects of the couplings can then be expressed in terms of the distribution of
potential barriers, and the fusion cross sections are given as a weighted sum of
the fusion cross sections for the distributed barriers. The underlying structure of
the barrier distribution can be most clearly investigated when the first derivative
of barrier penetrability, dP/dFE, is plotted as a function of energy. In heavy-ion
fusion reactions, this quantity corresponds to the second derivative of Eog,s, which
is referred to as the fusion barrier distribution, Dy,s. The fusion barrier distribution
has been extracted for many systems through the high-precision experimental data
of fusion cross sections, oys.

Even when the excitation energy of the intrinsic motion is not zero, the con-
cept of the fusion barrier distribution can be approximately generalized using the
eigenchannel representation of the nuclear S-matrix, defined as the eigenstates of
STS. We have demonstrated that the barrier distribution shows a transition from
the sudden tunneling limit to the adiabatic tunneling limit in a natural way as the
excitation energy increases, where the potential is simply renormalized in the latter
limit without affecting the shape of the barrier distribution (i.e., adiabatic barrier
renormalization).

The barrier distribution representation is also applicable to other multichannel
quantum tunneling problems. A good example is the dissociative adsorption phe-
nomenon in surface science. The rotational and vibrational excitations of diatomic
molecules play an important role in the adsorption process. These effects can be
described by the coupled-channels approach, and the barrier distribution can be de-
fined as in heavy-ion subbarrier fusion reactions. The results of coupled-channels
calculations have indicated that the barrier distribution representation provides a
useful means of clarifying the underlying mechanism in the dynamics of the surface
interaction of molecules.

Although our understanding of subbarrier fusion reactions has considerably in-
creased in the past decades, there are still many open problems in heavy-ion sub-
barrier fusion reactions. For example, it has not yet been understood completely
how the hindrance of fusion cross sections with respect to the standard coupled-
channels calculation takes place at deep-subbarrier energies. A likely mechanism
of the hindrance is that many noncollective channels are activated after the target
and projectile nuclei overlap with each other, and the relative energy is irreversibly
dissipated to the intrinsic motions. This would occur only at deep-subbarrier ener-
gies, in which the inner turning point of the potential barrier is located inside the
touching radius of the two nuclei. This phenomenon may thus be a good example of
dissipative quantum tunneling, which has been extensively discussed in many fields
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of physics and chemistry. A unique feature in nuclear physics is that the dissipative
nature of the couplings gradually appears, in a sense that the coupling is reversible
before the touching and it gradually reveals the irreversible character as the overlap
of the colliding nuclei increases. In order to gain a deep insight into this problem, it
might be helpful to revisit heavy-ion DICs from a more quantum mechanical point of
view. This is also important in connection with the synthesis of superheavy elements
by heavy-ion collisions with large mass numbers, for which the fusion cross section
is strongly hindered at energies near the bare Coulomb barrier.

Other important issues not covered in this paper include the fusion of halo nuclei
and the role of multinucleon transfer. For the former, there has been considerable
debate concerning how the breakup process affects subbarrier fusion.'3%) 141 How-
ever, the interplay between fusion and breakup involves many complex processes??)
and the role of breakup in fusion has not yet been understood completely. Moreover,
particle transfer processes also affect both fusion and breakup in a nontrivial way,
as has been found recently in %7Li + 29Pb reactions'*?) (see Ref. 143) for a review
on subbarrier fusion of the weakly bound stable nuclei %Li and ?Be). A theoretical
calculation has to take into account the fusion, transfer, and breakup processes si-
multaneously in a consistent manner. It remains a challenging problem to carry out
such calculations, although the time-dependent wave packet approach!¥® has been
performed with a limited partition for the transfer channels. From the experimen-
tal side, fusion cross sections for many neutron-rich nuclei do not appear to show
any particular enhancement or hindrance,9147) but recent experimental data for
12,13,14,15C 4 232T reactions have shown that the fusion cross sections are enhanced
for the »C projectile as compared with those for the other C isotopes.!4®) Again,
several types of transfer channels would have to be considered to understand the
differences in the behavior of fusion cross sections.'42):149-151)  Ip particular, the
multi-nucleon transfer process may play an important role in the fusion of neutron-
rich nuclei. Although there have been a few attempts to treat the multineutron
transfer process in subbarrier fusion reactions,'?157) it is still a challenging prob-
lem to include the multinucleon transfer processes in a full quantum mechanical
manner consistently with inelastic channels while also taking into account the final
(-value distribution of the transfer.

A much more challenging problem is to describe heavy-ion fusion reactions, and
thus many-particle tunneling,158) from fully quantum many-body perspectives, start-
ing from nucleon degrees of freedom. The time-dependent Hartree-Fock (TDHF') the-
ory has been widely employed to microscopically describe nuclear dynamics.'?)-160)
It is well known, however, that the TDHF method has a serious drawback in that it
cannot describe a many-particle tunneling phenomenon. In order to solve this prob-
lem, Bonasera and Kondratyev have introduced imaginary time propagation.'61):162)
In relation to this, we wish to mention that an alternative imaginary time approach,
called the mean field tunneling theory, for the quantum tunneling of systems with
many degrees of freedom has been developed in Ref. 163). The mean field tunnel-
ing theory is a reformulation of the dynamical norm method for quantum tunnel-
ing,86):164) which evaluates the nonadiabatic effect on the tunneling rate through the
change in the norm of the wave function for the intrinsic space during the evolution
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along the imaginary time axis. The mean field tunneling theory has been applied to
quantum mechanically discuss the effects of electron screening in low-energy nuclear
reactions,'6) while the dynamical norm method has been used to discuss the effects
of nuclear oscillation on fission.'%) It would be an interesting challenge to develop
a fully microscopic version of these methods and apply them to heavy-ion fusion
reactions. More recently, Umar et al. have used the density-constrained TDHF
(DC-TDHF) method to analyze heavy-ion fusion reactions.'%)7167) Even though
these microscopic approaches seem promising, they are based on certain assump-
tions, such as a local collective potential with a single channel. It is thus not yet
clear whether they are applicable to many-particle tunneling problems in general,
such as two-proton radioactivity68)173) and alpha decays.!™178) An ultimate goal
would be to develop a general microscopic theory that can describe several tunneling
phenomena simultaneously, not only in nuclear physics but also in other fields of
physics and chemistry. Such a theory would naturally provide a way to describe
the role of irreversibility (that is, the energy and angular momentum dissipations)
as well as the evolution of density after the touching in subbarrier fusion reactions
without any assumption of the adiabaticity of the fusion process.
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Appendix A
—— Relationship between Surface Diffuseness and Barrier Parameters

In this appendix, we discuss the relationship between the surface diffuseness
parameter a in a nuclear potential and the parameters that characterize the Coulomb
barrer, that is, the curvature, the barrier height, and the barrier position. With such
a relationship, one can estimate the value of a from empirical barrier parameters.

For a given nuclear potential Vi (r), the barrier position R; is obtained from the
condition that the first derivative of the total potential is zero at r = Ry,

d - [dVN(r) _ ZpZye?
r=Ry

EV(T) dr S Y

= 0. (A1)

The barrier height V;, and the curvature {2 are then evaluated as
7 P ZT€2

Vi, = V(R
» = VN (Rp) + R

: (A-2)
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V(R 27 pZre?/R3

I

where V]G (r) is the second derivative of the nuclear potential with respect to r.

A.1. Ezxponential potential

We first consider the exponential potential given by
Vi (r) = Voe /2, (A-4)

From Eq. (A-1), the depth of the nuclear potential V} is related to the charge product
ZPZT as

2

Vo Rryfa _ ZPZre”

From this equation, the barrier height and the curvature are

ZpZpe? a

v 22 (18, (A6)
ZpZre (1 2

=2 (22 A7
2 (G-2): (A7)

respectively.
A.2. Woods-Sazxon potential

We next consider the Woods-Saxon potential given by

Vo
VN(T) = - 1 + e(T—RO)/a ' (A8)

Combining Eqgs. (A-1), (A-2), and (A-3), one finds that the surface diffuseness pa-
rameter a is expressed in terms of Ry, V3, and (2 as

Ry

= A
a nS22 R} 27 p Zpe? ( 9)

T ZpZreZ + ZpZre2—RyV,,

Once the surface diffuseness parameter is thus evaluated, the other two parameters
in the nuclear potential can be obtained as

1 R? ZpZye?
l+e®== b -V A-10
te a ZpZre? ( Ry b> ’ ( )
QZPZT€2

Vo =ae *(1+¢€") (A-11)

2 ’
Rb

where z is defined as (R, — Rp)/a.
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Appendix B
—— Parabolic Approximation and the Wong Formula

If the Coulomb barrier is approximated by the parabola,
1
V(r) ~ Vo — Guf2*(r = Ry)?, (B-1)
the corresponding penetrability can be evaluated analytically as

P(E) = !

1+exp [25(V,— E)|
Using the parabolic approximation, Wong has derived an analytic expression for
fusion cross sections.*”) He assumed that (i) the curvature of the Coulomb barrier,
RS2, is independent of the angular momentum [, and (ii) the position of the Coulomb
barrier, Ry, is also independent of [, and the dependence of the penetrability on the
angular momentum can be well approximated by shifting the incident energy as

2
P/(E) = P (E - W) : (B-3)

(B-2)

If many partial waves contribute to the fusion cross section, the sum in Eq. (2-17)
may be replaced by the integral,

() = T /0 @ 1) P(E). (B4)

Changing the variable from [ to I(l 4+ 1), the integral can be explicitly evaluated,
leading to the Wong formula*®)

Otus () = mRb In [1 + exp ( - Q(E v;,)ﬂ (B-5)

At energies well above the Coulomb barrier, this formula reduces to the classical
expression of the fusion cross section given by Eq. (4-3).

The left panel of Fig. 15 shows the parabolic approximation to the Coulomb
barrier for the 0 + '#4Sm system shown in Fig. 1. Because of the long-range
Coulomb interaction, the Coulomb barrier is asymmetric and the parabolic potential
has a smaller width than the realistic potential. Nevertheless, the Wong formula for
fusion cross sections, Eq. (B-5), works well except at energies well below the barrier,
where the parabolic approximation breaks down (see the right panel of Fig. 15).

Even though the Wong formula appears to work well for the single-channel
potential model, one can still discuss the corrections to it. The first correction
is with respect to the integral in Eq. (B-4). To discuss the correction, we first note
that replacing the sum in Eq. (2-17) with the integral in Eq. (B-4) is equivalent to
taking only the leading term (m = 0) of the exact Poisson sum formula,

27T ™me
orus(E) = 15 Z 2l +1)P(E Z / AP(E; N)e?™ ™A d ), (B-6)

m=—0o0
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Fig. 15. (Left panel) Coulomb barrier for the '*0-+'**Sm system shown in Fig. 1 (solid line) and its
parabolic approximation (dashed line). (Right panel) Comparison of the corresponding fusion
cross sections obtained by numerically solving the Schrédinger equation without resorting to
the parabolic approximation (solid line) and those obtained with the Wong formula, Eq. (B-5).

where P(E; \) is any smooth function of \ satisfying P(E,1+1/2) = P,(E).8V Poffe
et al. have evaluated the contribution of the next most important terms, m = +1.179)
These terms lead to an oscillatory contribution to the fusion cross sections,

otus(E) = ow (E) + 0ose(E), (B:7)
where oy (E) is given by Eq. (B-5), while the oscillatory part oos.(E) is given by

WMRgh.Q 1

hi?
2
Oosc(E) = 47r,u,RbW exp (— I+ ] h2> sin(27ly). (B-8)

Here, I, is the grazing angular momentum satisfying

ly(ly + 1)R2

E=V

(B-9)
For heavy systems, the oscillatory part of fusion cross sections, g, is usually much
smaller than the leading term, oy. However, for light symmetric systems such as
120412C the oscillatory part becomes significant.!7-183) For a system of identical
spin-zero bosons, the factor (1 4 (—1)!) has to be included in the sum in Eq. (2:17)
owing to the symmetrization effect, making the contributions of all the odd partial
waves vanish. In this case, the leading term of the fusion cross section is still given

by the Wong formula, Eq. (B-5), while the oscillatory part becomes!™
h{? TuR2h2 1
Oosc(E) = 4WR§W exp (—%bﬂ h2> sin(rly). (B-10)

Figure 16 shows the fusion cross sections for the 12C+!C reaction obtained with
a parabolic potential with V;, = 5.6 MeV, Ry=6.3 fm, and Af2 = 3 MeV. The solid
line shows the result of the exact summation of partial wave contributions with Eq.
(B-3), while the dashed line shows the sum of Egs. (B-5) and (B-10). The separate
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Fig. 16. Fusion excitation function for the *2C+'2C system. The solid line is obtained by carrying
out the exact angular momentum summation (with the symmetrization factor) in Eq. (2-17)
with a parabolic potential with V, = 5.6 MeV, Ry=6.3 fm, and /{2 = 3 MeV. The barrier
position and the curvature are assumed to be independent of the angular momentum [. The
dotted line is obtained with the Wong formula, Eq. (B-5), while the dashed line is obtained
as the sum of the Wong formula and the oscillatory cross sections given by Eq. (B-10). The
experimental data are taken from Ref. 182).

contribution from the Wong formula, Eq. (B-5), is also shown by the dotted line. It
can be seen that the oscillation of fusion cross sections can be well reproduced with
the formula given by Eq. (B-10).

The second correction to the Wong formula is the angular momentum depen-
dence of the barrier radius.'®®) Up to the first order of A2 /1?22 R}, Balantekin et
al. have shown that the barrier radius for the Ith partial wave Ry is given by

11+ 1)h?

Ry =Ry — 5=

(B-11)
This equation indicates that the barrier position decreases as the angular momentum

[ increases. At energies well above the barrier, the classical fusion cross sections are
then modified to'®¥

175 2w
ounlB) = (1= ) = LBV (B> W) (B12)

Comparison between Eqs. (4-3) and (B-12) shows that the Wong formula slightly
overestimates fusion cross sections at energies well above the Coulomb barrier.

Appendix C
—— Multiphonon Coupling ——

In this appendix, we show that the dimension of the coupled-channels equations
can be reduced for vibrational couplings by introducing effective multiphonon chan-
nels. Suppose that we have two modes of vibrational excitations (e.g., quadrupole
and octupole modes). We consider the excitation operator

O = Bi(al + a1) + Ba(al + az) (C-1)
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and the phonon Hamiltonian
Hy = hwla];al + Mgagag, (02)

where a{ and ag are the phonon creation operators for the first and second modes,
respectively. ; (i = 1,2) are the coupling constants, while fuwv; (i = 1,2) are the
phonon excitation energies for each mode. We have shifted the phonon energies so
that the ground state is at zero energy.

If we truncate the phonon space up to the one-phonon states, we have three basis
states, [00),|10), and |01), where the state |ning) corresponds to the product state
of the ny phonon state for the first mode and the no phonon state for the second
mode. Here, we have included the states with nq + ny < 1. The matrix elements of
the operator Hy + O with these basis states are,

) 0 5/ B
Hy+ 0= 61 hw 0 . (C-3)
B2 0 hws

It is easy to see that the ground state |00) couples only to a particular combination
of |10) and |01),9
1

1) = ——— (5]10 01 C-4
with
0[00) = /8% + B2 |1). (C5)

The other combination of [10) and |01), 82|10) — /31]|01), couples neither to |00) nor to
|1), and this can be removed from the coupled-channels calculation if the excitation
energies of the two modes are the same, fiw; = hws = hw. In this case, the dimension
of the coupled-channels equations can be reduced to two with a modified strength

4569) )
m+o= (4 ), (©6)

where 3 is defined by 8 = /37 + 83. One can easily generalize this scheme to
higher members of phonon states. The resultant matrix is equivalent to that for a
single-phonon mode with effective strength 3. For instance, when the phonon space
is truncated at the two-phonon states, the coupling matrix is

0 B 0
Hy+O=( B8 mw V28 |, (C7)
0 V28 2w

where the effective two-phonon state is defined as
1

2=

(82120) + V2B Ba111) + B3102)) (C8)
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