

これまでは、芯核のまわりに中性子が1個ある場合を考えてきた

芯核のまわりに中性子が2個あるとどうなる?

2中性子間に働く相互作用 (対相関)の影響は?

$$\Delta E_L = -g I_r^{(l)} \frac{(2l+1)^2}{4\pi} \left(\begin{array}{ccc} l & l & L \\ 0 & 0 & 0 \end{array} \right)^2 \equiv -g I_r^{(l)} \frac{A(ll;L)}{4\pi}$$

対相関のため、同種核子(2つの中性子または2つの陽子)が 角運動量ゼロを組むと安定化

例:	束縛エネルギー (MeV)
${}^{210}_{82}\text{Pb}_{128} = {}^{208}_{82}\text{Pb}_{126} + 2n$	1646.6
${}^{210}_{83}\text{Bi}_{127} = {}^{208}_{82}\text{Pb}_{126} + n + p$	1644.8
${}^{209}_{82}Pb_{127} = {}^{208}_{82}Pb_{126} + n$	1640.4
${}^{209}_{83}Bi_{126} = {}^{208}_{82}Pb_{126} + p$	1640.2

波動関数:

$$\begin{aligned} |\Psi_{0+}\rangle &= |(ll)L = 0\rangle \\ &+ \sum_{l'} \frac{\langle (l'l')L = 0|v_{\text{res}}|(ll)L = 0\rangle}{2\epsilon_l - 2\epsilon_{l'}} |(l'l')L = 0\rangle + \cdots \end{aligned}$$

各軌道は部分的にのみ占有されることになる cf. BCS 理論 <u>弱束縛核における対相関</u>

$H = \sum_{i} T_{i} + \sum_{i < j} v_{ij} \to H = \sum_{i} (T_{i} + V_{i}) + \sum_{i < j} v_{ij} - \sum_{i} V_{i}$

平均からのずれ (残留相互作用)

<u>中性子過剰核の物理</u>

- 弱束縛系
- 残留相互作用(対相関)
- 連続状態との結合

ポテンシャルの井戸に束縛された相互作用する多フェルミオン系

残留相互作用 → 引力

ボロミアン核の構造 ✓多体相関のため non-trivial ✓多くの注目を集めている

'He ⁴He

²Н

n

ЗΗ

10

7Li

°Не

°B

'Be

°Li

⁴n

110

'nВ

⁸Li

"ボロミアン核"

 $^{12}C^{-13}C$

*Be ¹⁰Be ¹¹Be ¹²Be

 ^{12}B

''В

٩Li

°Не

15

¹⁴B

14

¹зВ

ボロメオ家 (イタリア13世紀) の紋章

結び目理論: 位相幾何学の分野(数学)

n=3: Borromean

n=6

<u>(参考)ブルニアン原子核</u>

cf. N. Curtis et al., PRC77('08)021301(R)

双中性子 (dineutron) 相関

原子核中で2つの中性子は空間的に どのように配置されているのか?

2つの中性子が独立に運動していると すると、片方の中性子がどこにいようとも もう片方は関知しない

対相関が働くとどうなるか?

この問題はかなり古くから議論されてきた

NPA288('77)397

G.F. Bertsch, R.A. Broglia, and C. Riedel, NPA91('67)123

2中性子は空間的に局在している(双中性子 – dineutron – 相関) cf. A.B. Migdal, "Two interacting particles in a potential well", Soviet J. of Nucl. Phys. 16 ('73) 238.

dineutron 相関は異なるパリティ状態の混合によって生じる

F. Catara, A. Insolia, E. Maglione, and A. Vitturi, PRC29('84)1091

(後でもう少し説明します)

<u>Dineutron クラスター模型</u>

Dineutron 相関の考えを中性子過剰核へ最初に適用したのは Hansen と Jonson

⁹Liとn²の2体系として¹¹Liの構造を 考えた(*l*=0で束縛する)

dineutron は束縛されたクラスター と仮定(構造はナシ)

P.G. Hansen and B. Jonson, Europhys. Lett. 4('87)409

cf. ソフト双極子励起 K. Ikeda, INS Report JHP-7 (*88)

> K. Ikeda, T. Myo, K. Kato, and H. Toki, Lecture Note in Phys., vol. 818

P.G. Hansen and B. Jonson, Europhys. Lett. 4('87)409

2中性子分離エネルギー: $S_{2n} = 378 + .5 \text{ keV for } ^{11}\text{Li}$ (C. Bachelet et al., 973 keV for ^{6}He \longrightarrow ハロー構造 ^{11}Li (C. Bachelet et al., PRL100('08)182501) ^{11}Li <u>3体模型計算 ('90~): dineutron クラスター模型の微視的理解</u>

この3体ハミルトニアンの基底状態を求め、密度分布を 調べる:

(例えば) V_m がないときの状態で展開し、展開係数を求める

$$\Psi_{gs}(\boldsymbol{r}_1, \boldsymbol{r}_2) = \mathcal{A} \sum_{nn'lj} \alpha_{nn'lj} \Psi_{nn'lj}^{(2)}(\boldsymbol{r}_1, \boldsymbol{r}_2)$$

$$\Psi_{nn'lj}^{(2)}(r_1,r_2) = \sum_m \langle jmj - m|00 \rangle \psi_{nljm}(r_1) \psi_{n'lj-m}(r_2)$$

<u>3体模型計算 ('90~): dineutron クラスター模型の微視的理解</u>

G.F. Bertsch, H. Esbensen, Ann. of Phys., 209('91)327

 $x^2 y^2 \rho_2(x, y)$ for ⁶He

ν

X

FIG. 1. Spatial correlation density plot for the 0^+ ground state of ⁶He. Two components—di-neutron and cigarlike—are shown schematically.

Yu.Ts. Oganessian, V.I. Zagrebaev, and J.S. Vaagen, *PRL82('99)4996*M.V. Zhukov et al., *Phys. Rep. 231('93)151*

"di-neutron" and *"cigar-like"* configurations

<u>3体模型計算 ('90~): dineutron クラスター模型の微視的理解</u>

⁶He

別の representation

芯核と中性子の間の距離を 2つの中性子とも同じにとり、 rとθの2次元プロット

K.Hagino and H. Sagawa, PRC72('05)044321

対相関力がある場合とない場合の比較(i):

 ^{11}Li

• 対相関がないと、2つの対称的なピーク(p_{1/2}状態を反映)。

- 対相関があると、大きい θ にあるピークが抑制され、
 小さい θ にあるピークが増幅する(双中性子相関)。
- 小さい θ にあるピークのテールがのびる(ハロー構造)。

── 対相関による連続状態との結合の効果

対相関力がある場合とない場合の比較(ii):

¹¹Li 1つの中性子を (z₁, x₁)=(3.4 fm, 0)に置いたときのもう一つの 中性子の分布

- ・対相関がないと、zと-zで対称的な分布。片方の中性子が どこにいても分布は変わらない。
- ・対相関があると、2つの中性子は近くにいる。1つの中性子の 場所が変わると、もう1つも変わる。

<u>重い中性子過剰核の dineutron 相関</u>

M. Matsuo, K. Mizuyama, and Y. Serizawa, PRC71('05)064326 Skyrme HFB

N. Pillet, N. Sandulescu, and P. Schuck, PRC76('07)024310 Gogny HFB

(注) dineutron 相関は弱束縛に特有な現象というわけではない

N. Pillet, N. Sandulescu, and P. Schuck, PRC76('07)024310

むしろ、対相関力による異なるパリティ状態の混合が本質的

dineutron 相関は異なるパリティ状態の混合によって生じる

F. Catara, A. Insolia, E. Maglione, and A. Vitturi, PRC29('84)1091

何故、異なるパリティが混ざると dineutron 相関が生じるのか?

1次元3体模型

何故、異なるパリティが混ざると dineutron 相関が生じるのか?

$$\Psi_{gs}(x_1, x_2) = \Psi_{ee}(x_1, x_2) + \Psi_{oo}(x_1, x_2)$$

$$\uparrow \qquad \uparrow$$

2つの中性子とも 正パリティ状態 2つの中性子とも 負パリティ状態

$$\rightarrow \rho_2(x_1, x_2) = |\Psi_{gs}(x_1, x_2)|^2 = |\Psi_{ee}(x_1, x_2)|^2 + |\Psi_{oo}(x_1, x_2)|^2 + 2\Psi_{ee}(x_1, x_2)\Psi_{oo}(x_1, x_2) |^2$$

cf.
$$\Psi_{ee}(x_1, x_2)\Psi_{oo}(x_1, x_2)$$

= $-\Psi_{ee}(x_1, -x_2)\Psi_{oo}(x_1, -x_2)$

K. H., A. Vitturi, F. Perez-Bernal, and H. Sagawa, J of Phys. G38('11)015105

<u>何故、異なるパリティが混ざると dineutron 相関が生じるのか?</u>

$$\rho_2(x_1, x_2) = |\Psi_{ee}(x_1, x_2)|^2 + |\Psi_{oo}(x_1, x_2)|^2 + 2\Psi_{ee}(x_1, x_2)\Psi_{oo}(x_1, x_2)|^2$$

K. Hagino, A. Vitturi, F. Perez-Bernal, and H. Sagawa, preprint

<u>ボロミアン原子核のE1励起</u>

2中性子ハロー核の場合

 $\hat{D}_{\mu} = e_{\mathsf{E}1} \cdot RY_{1\mu}(\theta_R, \phi_R)$ $R = (r_1 + r_2)/2$ $= \frac{2Z_c - 0 \cdot A_c}{A_c + 2}e$ e_{E1} $= \frac{2Z_c}{A_c+2}e$ $B_{\text{tot}}(E1) = \frac{3}{4\pi} e_{\text{E1}}^2 \langle R^2 \rangle$ $= \frac{3}{\pi} \left(\frac{Z_c e}{A + 2} \right)^2 \langle R^2 \rangle$

<u>ボロミアン原子核のE1励起</u>

T. Nakamura et al., PRL96('06)252502

<u>ボロミアン原子核のE1励起</u>

H. Esbensen, K. Hagino, P. Mueller, and H. Sagawa, PRC76('07)024302

T. Aumann et al., PRC59('99)1252

TABLE II. Experimental values (Expt.) for the integrated ($E^* \leq 5$ MeV and $E^* \leq 10$ MeV) non-energy-weighted [$\Sigma B(E1)$] and energy-weighted [$\Sigma E^{**}B(E1)$] dipole strength. Corresponding theoretical values from "Ref." and sum rule values are given for comparison.

Ref.	$\Sigma B(E1)$ $(e^2 \text{ fm}^2)$	$\frac{\Sigma E^{**}B(E1)}{(e^2 \text{ fm}^2 \text{ MeV})}$
Expt. (E*≤5 MeV)	0.59 ± 0.12	1.9±0.4
[7] ($E^* \le 5$ MeV)	0.71	2.46
Expt. (<i>E</i> *≤10 MeV)	1.2 ± 0.2	6.4±1.3
[7] (<i>E</i> *≤10 MeV)	1.02	4.97
Cluster sum rule	1.37 [7]	4.95
TRK sum rule		19.7

<u>ボロミアン原子核の幾何学</u>

実験データから2中性子の空間的 配位を決められないか?

*r*_{c-2n} と *r*_{nn} の情報があれば、 2中性子の間の角度は

$$\cos \frac{\theta_{nn}}{2} \sim \frac{r_{c-2n}}{\sqrt{r_{c-2n}^2 + \frac{r_{nn}^2}{4}}}$$

と見積もることができる。

C.A. Bertulani and M.S. Hussein, PRC76('07)051602(R) K. Hagino and H. Sagawa, PRC76('07)047302

<u>ボロミアン原子核の幾何学</u>

は、B_{tot}(E1)から見積もることができる:

$$B_{\text{tot}}(E1) \sim \frac{3}{\pi} \left(\frac{Z_c e}{A_c + 2}\right)^2 \langle R^2 \rangle$$

または、2n 分解反応のHBT解析より見積もれる: $C(p_1, p_2) = \frac{P_2(p_1, p_2)}{P_1(p_1)P_1(p_2)}$

(C.A. Bertulani and M.S. Hussein, PRC76('07)051602)

<u>ボロミアン原子核の幾何学</u>

nn 間角度の「実験値」

$$\sqrt{\langle R^2 \rangle} \longleftarrow B_{tot}(E1)$$

$$\sqrt{\langle r^2 \rangle} \longleftarrow matter radius$$
or HBT
$$\langle \theta_{12} \rangle = 65.2^{+11.4}_{-13.0} \quad (^{11}\text{Li})$$

$$= 74.5^{+11.2}_{-13.1} \quad (^{6}\text{He})$$

K.H. and H. Sagawa,PRC76('07)047302 C.A. Bertulani and M.S. Hussein, PRC76('07)051602 ¹¹Li 3体模型計算の結果

⁶He

注意点

nn 間角度の「実験値」 $\langle \theta_{12} \rangle = 65.2^{+11.4}_{-13.0}$ (¹¹Li) = 74.5^{+11.2}_{-13.1} (⁶He)

相関がなければ <θ₁₂> = 90 度 ↓

ここからのずれが相関の強さの度合いを反映する

< θ_{12} > = 65 度は dineutron 相関とは矛盾しない (2つのピークの平均と なっているため)

0.04

0.035

0.025

0.015

0.03

0.02

0.01

0.005

-0.005

0