電磁遷移

1. 遷移確率

\[\Gamma_{fi}(\lambda \mu) \sim \frac{8\pi(\lambda + 1)}{\hbar \lambda((2\lambda + 1)!!)} \left(\frac{E_i}{\hbar c} \right)^{2\lambda+1} |\langle \Psi_f |M_{\lambda \mu} |\Psi_i \rangle|^2 \] （1）

- EA 遷移

\[M_{\lambda \mu} = \sum_{i=1}^{Z} e r_i^\lambda Y_{\lambda \mu}(\hat{r}_i) \equiv \hat{Q}_{\lambda \mu} \] （2）

- MX 遷移

\[M_{\lambda \mu} = \mu_n \sum_{i=1}^{A} \left\{ g_{i}^{(i)} s_i + \frac{2}{\lambda + 1} q_{i}^{(i)} I_i \right\} \cdot \left(\nabla r_i^\lambda Y_{\lambda \mu}(\hat{r}_i) \right) \equiv \hat{M}_{\lambda \mu} \] （3）

\[\mu_n = e\hbar/2mc, g_i = 1 \text{（陽子） or 0（中性子）}, g_s = 5.586 \text{（陽子） or } -3.826 \text{（中性子）} \]

2. 换算遷移確率

角運動量の z 成分を区別しないとき、

\[\Gamma_{fi} = \frac{1}{2I_i + 1} \sum_{M_f, M_i, \mu} \Gamma_{fi}(\lambda \mu) \] （4）

\[= \frac{1}{2I_i + 1} \sum_{M_f, M_i, \mu} \frac{8\pi(\lambda + 1)}{\hbar \lambda((2\lambda + 1)!!)} \left(\frac{E_i}{\hbar c} \right)^{2\lambda+1} |\langle I_f M_f |M_{\lambda \mu} |I_i M_i \rangle|^2 \] （5）

Wigner-Eckart の定理：

\[\langle I_f M_f |M_{\lambda \mu} |I_i M_i \rangle = (-1)^{I_i - M_i} \frac{1}{\sqrt{2\lambda + 1}} \langle I_f M_f I_i - M_i |\lambda \mu \rangle \langle I_f ||M_\lambda ||I_i \rangle \] （6）

C.G. 係数の性質：

\[\sum_{M_i M_f} \langle I_f M_f I_i - M_i |\lambda \mu \rangle^2 = 1 \] （7）

を用いると

\[\Gamma_{fi} = \frac{8\pi(\lambda + 1)}{\hbar \lambda((2\lambda + 1)!!)} \left(\frac{E_i}{\hbar c} \right)^{2\lambda+1} \frac{1}{2I_i + 1} |\langle I_f ||M_\lambda ||I_i \rangle|^2 \] （8）

ここで

\[B(E\lambda; I_i \rightarrow I_f) = \frac{1}{2I_i + 1} |\langle I_f ||Q_\lambda ||I_i \rangle|^2 \] （9）

\[B(M\lambda; I_i \rightarrow I_f) = \frac{1}{2I_i + 1} |\langle I_f ||M_\lambda ||I_i \rangle|^2 \] （10）

を換算遷移確率という。
電磁遷移について

遷移確率

\[\Gamma_{fi}(\lambda \mu) \sim \frac{8\pi(\lambda + 1)}{\hbar \lambda((2\lambda + 1)!!)^2} \left(\frac{E \gamma}{\hbar c} \right)^{2\lambda+1} |\langle \Psi_f | M_{\lambda \mu} | \Psi_i \rangle|^2 \]

Eλ 遷移

\[M_{\lambda \mu} = \sum_{i=1}^{Z} e r_{i}^{\lambda} Y_{\lambda \mu}(\hat{r}_{i}) \equiv \hat{Q}_{\lambda \mu} \]

Mλ 遷移

\[M_{\lambda \mu} = \mu_N \sum_{i=1}^{A} \left\{ g_{s}^{(i)} s_{i} + \frac{2}{\lambda + 1} g_{l}^{(i)} l_{i} \right\} \cdot (\nabla r_{i}^{\lambda} Y_{\lambda \mu}(\hat{r}_{i})) \equiv \hat{M}_{\lambda \mu} \]

\[\mu_N = \frac{e \hbar}{2mc}, \quad g_l = \begin{cases} 1 \text{（陽子）} \\ 0 \text{（中性子）} \end{cases}, \quad g_s = \begin{cases} 5.586 \text{（陽子）} \\ -3.826 \text{（中性子）} \end{cases} \]

異常磁気モーメント

* 点粒子であれば、\(g_s = 2 \)（陽子）、=0（中性子）
換算遷移確率

\[|\langle \psi_f | \mathcal{M}_{\lambda \mu} | \psi_i \rangle|^2 \rightarrow \frac{1}{2I_i + 1} \sum_{M_i, M_f, \mu} |\langle I_f M_f | \mathcal{M}_{\lambda \mu} | I_i M_i \rangle|^2 \]

ウィグナー・エッカルトの定理

\[\langle I_f M_f | \mathcal{M}_{\lambda \mu} | I_i M_i \rangle = (-1)^{I_i - M_i} \frac{1}{\sqrt{2\lambda + 1}} \langle I_f M_f I_i - M_i | \lambda \mu \rangle \langle I_f | \mathcal{M}_\lambda | I_i \rangle \]

\(M_i, M_f \) の依存性は単純 依存しないな Clebsch

\[\sum_{M_i, M_f} \langle I_f M_f I_i - M_i | \lambda \mu \rangle^2 = 1 \]

\[\rightarrow \frac{1}{2I_i + 1} \sum_{M_i, M_f, \mu} |\langle I_f M_f | \mathcal{M}_{\lambda \mu} | I_i M_i \rangle|^2 = \frac{1}{2I_i + 1} |\langle I_f | \mathcal{M}_\lambda | I_i \rangle|^2 \]

（換算遷移確率）
一般に

\[\Gamma_{fi} \sim \frac{8\pi(\lambda + 1)}{\hbar \lambda ((2\lambda + 1)!!)^2} \left(\frac{E_\gamma}{\hbar c} \right)^{2\lambda + 1} \frac{1}{2I_i + 1} |\langle I_f | M_\lambda | I_i \rangle|^2 \]

一般に

\[\Gamma(E\lambda) \gg \Gamma(M\lambda) \]

\[\Gamma(E\lambda) \gg \Gamma(E\lambda + 1) \gg \cdots \]

E2とM1の競合が起こることもある。
選択則

\[\langle I_f M_f | \mathcal{M} \lambda \mu | I_i M_i \rangle \]

初期状態 + 1 フォトン状態として、

\[|\psi'_{i}\rangle = \mathcal{M} \lambda \mu |I_i M_i\rangle \]

として、

\[\langle I_f M_f | \psi'_{i}\rangle \neq 0 \]

であるためには、

|\psi'_{i}\rangle と |I_f M_f\rangle が同じ量子数を持たなければならない

→ 選択則

\[I_i と \lambda を合成して I_f にならなければならならない \]

\[|I_i - \lambda| \leq I_f \leq I_i + \lambda \]

（z 成分に関しては: \(M_f = M_i + \mu \)）
選択則

$$\langle I_f M_f | \mathcal{M}_{\lambda \mu} | I_i M_i \rangle$$

I_i と λ を合成して I_f にならなければならない

$$|I_i - \lambda| \leq I_f \leq I_i + \lambda$$

$$\mathcal{M}_{\lambda \mu} = \sum_{i=1}^{Z} er_i^\lambda Y_{\lambda \mu}(\tilde{r}_i) \equiv \tilde{Q}_{\lambda \mu}$$

パリティ $(-1)^\lambda$

$$\mathcal{M}_{\lambda \mu} = \mu_N \sum_{i=1}^{A} \left\{ gs_i^{(i)} s_i + \frac{2}{\lambda + 1} g_l^{(i)} l_i \right\} \cdot (\nabla r_i^\lambda Y_{\lambda \mu}(\tilde{r}_i)) \equiv \tilde{M}_{\lambda \mu}$$

パリティ $(-1)^{\lambda + 1}$

例）$2^+ \rightarrow 0^+$ E2
 $3^- \rightarrow 0^+$ E3
 $4^+ \rightarrow 2^+$ E2, E4, M3, E6, M5
 $2^+ \rightarrow 3^-$ E1, E3, E5, M2, M4
和則（わそく）: Sum Rule

$$\Gamma_{i \rightarrow f} \sim |\langle \psi_f | \sum_i z_i | \psi_i \rangle|^2$$ (E1の場合)

基本的な考え方:

$$\Gamma_{\text{tot}} = \sum_f \Gamma_{i \rightarrow f} \sim \langle \psi_i | \left(\sum_i z_i \right)^2 | \psi_i \rangle$$

$$\sum_f |\langle f | \hat{F} | \psi_i \rangle|^2 = \sum_f \langle \psi_i | F | f \rangle \langle f | \hat{F} | \psi_i \rangle$$

$$= \langle \psi_i | \hat{F}^2 | \psi_i \rangle$$

（完全系） \(\sum_f |f \rangle \langle f| = 1 \)
和則（わそく）：Sum Rule

\[
\Gamma_{i \rightarrow f} \sim |\langle \psi_f | \sum_i z_i | \psi_f \rangle|^2
\]

（E1の場合）

\[
\Gamma_{\text{tot}} = \sum_f \Gamma_{i \rightarrow f} \sim \langle \psi_i | \left(\sum_i z_i \right)^2 | \psi_i \rangle
\]

エネルギー重み付き和則

\[
S_1 \equiv \sum_f (E_f - E_i) \Gamma_{i \rightarrow f} = \frac{\hbar^2}{2m} Z
\]

（TRK和則）
和則（わそく）: Sum Rule

\[
S_1 \equiv \sum_f (E_f - E_i) \Gamma_{i \rightarrow f} \sim \sum_f (E_f - E_i) |\langle \psi_f | \sum z_i |\psi_i \rangle|^2 = \frac{\hbar^2}{2m} Z
\]

\[
\frac{1}{2} \langle \psi_i | [\hat{F}, [H, \hat{F}]] |\psi_i \rangle = \frac{1}{2} \langle \psi_i | \hat{F} (H \hat{F} - \hat{F} H) - (H \hat{F} - \hat{F} H) \hat{F} |\psi_i \rangle
\]

\[
= \langle \psi_i | \hat{F} H \hat{F} - E_i \hat{F}^2 |\psi_i \rangle
\]

\[
= \sum_f E_f |\langle \psi_i | \hat{F} |f\rangle|^2 - E_i \langle \psi_i | \hat{F}^2 |\psi_i \rangle
\]

\[
= \sum_f (E_f - E_i) |\langle f | \hat{F} |\psi_i \rangle|^2
\]

\[
\langle \psi_i | \hat{F} H \hat{F} |\psi_i \rangle \uparrow \sum_f \langle \psi_i | \hat{F} H |f\rangle \langle f | \hat{F} |\psi_i \rangle
\]

\[
= \sum_f E_f \langle \psi_i | \hat{F} |f\rangle \langle f | \hat{F} |\psi_i \rangle
\]

（完全系）\[\sum_f |f\rangle \langle f| = 1 \]
和則（わそく）：Sum Rule

\[
\sum_f (E_f - E_i)|\psi_f|\bar{F}|\psi_i\rangle^2 = \frac{1}{2}\langle\psi_i|[[\bar{F}, [H, \bar{F}]]]|\psi_i\rangle
\]

\[
[H, \bar{F}] = \left[\sum_i \frac{p_i^2}{2m} + \sum_{i,j} v_{ij}, \sum_j z_j\right] = \left[\sum_i \frac{p_i^2}{2m}, \sum_j z_j\right] = \sum_i \frac{-i\hbar p_{zi}}{m}
\]

\[
[\bar{F}, [H, \bar{F}]] = \frac{-i\hbar}{m} \cdot \left[\sum_j z_j, \sum_i p_{zi}\right] = \frac{\hbar^2}{m} \sum_i = \frac{\hbar^2}{m} Z
\]

\[
S_1 = \frac{\hbar^2 Z}{2m}
\]

モデルに依らない定数

[TRK (Thomas-Reiche-Kuhn) Sum Rule]
和則（わそく）: Sum Rule

\[\Gamma_{\text{tot}} = \sum_f \Gamma_{i \rightarrow f} \sim \langle \psi_i \rvert \left(\sum_i z_i \right)^2 \rvert \psi_i \rangle \]

\[S_1 \equiv \sum_f (E_f - E_i) \Gamma_{i \rightarrow f} = \frac{\hbar^2}{2m} Z \]

和則:

- 励起状態の（ある種の）情報が基底状態の性質のみによって表わされる（励起状態の情報を知っている必要がない）。
- 遷移確率を測ることによって原子核の半径などの情報を得られる。
四と崩壊

多体のハミルト = アン

\[H = \sum_i \frac{p_i^2}{2m} + \sum_{i<j} V_{ij} \]

\[\to H = \sum_i \left[\frac{1}{2m} \left(\vec{p}_i - \frac{e_i}{c} \vec{A}(r_i, t) \right)^2 + e_i \phi_i \right] + \sum_{i<j} V_{ij} + H_{em} \]

\[e_i = \begin{cases} + e & \text{陽子} \\ 0 & \text{中性子} \end{cases} \]

* このようにすると古典的なローレンツが"T"でくる。*

* A : ベクトルポテンシャル
 \[\vec{A} \]

* \(\phi \) : スカラー ポテンシャル
 \[\phi \]

ケーロン・ティーザー

\[\begin{cases} \nabla \cdot \vec{A} = 0 \\ \phi = 0 \end{cases} \]

\[\begin{cases} \vec{E} = -\frac{1}{c} \vec{A} \\ \vec{B} = \nabla \times \vec{A} \end{cases} \]
\[
(P - \frac{e}{c} A)^2 = P^2 - \frac{e}{c} (P \cdot A + A \cdot P) + \frac{e^2}{c^2} A^2
\]

= \[P^2 - \frac{e}{c} (P \cdot A) + 2A \cdot P \]

\[\frac{k}{i} \nabla \cdot A = 0 \quad (\text{クロノン定理})\]

= \[P^2 - \frac{2e}{c} A \cdot P\]

\[H_{\text{int}} = -\frac{e_i}{mc} A(r_i, t) \cdot P_i\]

\[|\Psi_{\text{初}}\rangle \rightarrow \Psi\]

\[|\Psi_{\text{末}}\rangle \rightarrow 1\]

\[T = \frac{2\pi}{\hbar} \frac{1}{f} \langle f | H_{\text{int}} | i \rangle^2\]
\[
\begin{align*}
\text{Hint} & = -\frac{e_i}{mc} A_i(x, t) \cdot P_i \\
& \quad \frac{1}{\omega_c} \sum \alpha \cdot a_{k\alpha}^+ e^{-i(k \cdot x - \omega t)} + h.c. \quad (\omega = c k)
\end{align*}
\]

偏極ベクトル

\[
\begin{align*}
\text{クロン・ツシ} & \quad \nabla \cdot A = 0 \\
& \quad \rightarrow k \cdot \varepsilon = 0 \quad (\text{横波条件})
\end{align*}
\]

2つの独立解

\[
\varepsilon_\alpha \quad (\alpha = 1, 2)
\]

電磁遷移確率

\[
|\Psi_i \rangle \rightarrow |\Psi_f \rangle \rightarrow |\Psi_f \rangle
\]

\[
\langle f | \text{Hint} | i \rangle = -\frac{e_i}{mc} \varepsilon_\alpha e^{i\omega t} \langle \Psi_f | e^{-i(k \cdot x)} P_i | \Psi_i \rangle
\]

\[
\times \langle 1 | a_{K\alpha}^+ | 10 \rangle
\]
E1遷移

\(e^{-i k \cdot r} \sim 1 \)

\(\Leftrightarrow E \ll \frac{\hbar c}{R} \)

例えば

\[E_R = 1 \text{ MeV} \]

\[k = \frac{E_R}{\hbar c} \sim \frac{1}{200} \text{ fm}^{-1} \]

\[\sim \frac{1}{2} \text{ eV} \cdot \langle \tau_f | \Phi_i \rangle \]

(note)

\[[p^2, \hat{U}] = -2i \hbar \hat{P} \]

\[[\frac{p^2}{2m} + \hat{U}(r), \hat{P}] = -i \hbar \hat{P} \]

\[H_0

\[\langle \psi_f | \frac{\tau_i}{\hbar} P_i | \psi_i \rangle = \langle \psi_f | \left[\frac{i \hbar}{m} [H_0, \frac{\tau_i}{\hbar} P_i] \right] | \psi_i \rangle \]

\[= \frac{i \hbar}{m} (E_f - E_i) \langle \psi_f | \left(\frac{\tau_i}{\hbar} P_i \right) | \psi_i \rangle \]

これは、

\[H_{\text{int}} = \vec{A} \cdot \vec{d} \quad (\vec{A}: \text{電場}, \quad \vec{d} = \frac{\tau_i}{\hbar} P_i) \]

に対する摂動と同じ形

\[\rightarrow \text{電気及び極子(E1)遷移} \]
(k × E) · (r × p) = \varepsilon_i j k, E_j \cdot \varepsilon_i j k, E_j, p_j \cdot p_j
= (\delta_i j \delta_j i - \delta_i j \delta_j i) k, E_j \cdot E_j, p_j \cdot p_j
= (k, r) (E, p) - (k, p) (E, r)

E_2 + M_1 転移

\[e^{-i k \cdot r} \sim 1 - i k \cdot r + \cdots \]

a 2 項目の寄与
(higer order)

(note)

\[\langle \Psi_f | (k \cdot r) (E \cdot p) | \Psi_i \rangle \]

\[= \frac{1}{2} \langle \Psi_f | (\overbrace{(k \cdot r) (E \cdot p)} + \overbrace{(k \cdot p) (E \cdot r)} | \Psi_i \rangle \]

\[+ \frac{1}{2} \langle \Psi_f | (k \cdot r) (E \cdot p) - (k \cdot p) (E \cdot r) | \Psi_i \rangle. \]

first term: \[(k \cdot r) (E \cdot p) + (k \cdot p) (E \cdot r) = \varepsilon_i (r_i p_j + r_j p_i) \varepsilon_j \]

\[= k \cdot (E p + p E) \cdot E \]

\[\frac{m_i}{\hbar} [H_0, \hat{r}_j] \]

\[\uparrow \]

E_2 転移

second term: \[(k \cdot r) (E \cdot p) - (k \cdot p) (E \cdot r) \]

\[= (k \times E) \cdot (r \times p) \]

\[\rightarrow \]

M_1 転移
四 高次の項まで含めて 一般的に

\[P_i (\lambda \mu) \sim \frac{8 \pi (\lambda + 1)}{\hbar \lambda ((2 \lambda + 1)!!)^2} \left(\frac{E_i}{\hbar c} \right)^{\lambda + 1} \]

\[\times \left| \langle \Phi_4 | \hat{\mathcal{M}}_{\lambda \mu} | \Phi_i \rangle \right|^2 \]

・ E の変換

\[\hat{\mathcal{M}}_{\lambda \mu} = \sum_{i=1}^{2} e r_i a Y_{\lambda \mu}(\hat{r}_i) = \hat{Q}_{\lambda \mu} \]

・ M の変換

\[\hat{\mathcal{M}}_{\lambda \mu} = \mu_N \sum_{i=1}^{4} \left\{ g_s \delta_i + \frac{2}{\lambda + 1} g_x \delta_i \right\} \]

\[(\nabla r_i a Y_{\lambda \mu}(\hat{r}_i)) = \hat{\mathcal{M}}_{\lambda \mu} \]

\[\mu_N = \frac{e \hbar}{2mc} \]

\[g_x = \begin{cases} 1 & \text{for } p \\ 0 & \text{for } n \end{cases} \]

\[g_s = \begin{cases} 5.586 & \text{for } p \\ -3.826 & \text{for } n \end{cases} \]
角度動量の x 成分を区別しない時

\[
T_{fi} = \frac{1}{2I_i + 1} \sum_{M_f, \lambda_f} T_{fi}(\lambda_f) \\
- \frac{1}{2I_i + 1} \frac{\hbar \gamma (2 \lambda + 1)}{4I_i (2 \lambda + 1)!!} \left(\frac{E_i}{k c} \right)^{2\lambda + 1} \frac{1}{2I_i + 1} \left| \langle I_f M_f | \hat{M}_\lambda \parallel I_i M_i \rangle \right|^2 \]

(note) Wigner-Eckart の定理

\[
\langle I_f M_f | \hat{M}_\lambda \parallel I_i M_i \rangle = (-)^{I_i - M_i} \frac{1}{\sqrt{2\lambda + 1}} \left(\langle I_f M_f I_i - M_i | \lambda \rangle \right) \times \langle I_f \parallel \hat{M}_\lambda \parallel I_i \rangle
\]

(note) \sum_{M_i, M_f} \langle I_f M_f I_i - M_i | \lambda \rangle^2 = 1

- 般に \(T(\text{EA}) \gg T(Ma) \)
- \(T(\text{EA}) \gg T(E, A+1) \gg \cdots \)

EA と Ma の競合が起こること。
選択則

\[
\left\langle I + m_f \mid Q_{\lambda \mu} \mid I_i m_i \right\rangle
\]

初期状態

\[
\text{終状態} \quad \text{初期状態} + 1 \text{粒子} \to \text{状態}
\]

\[
|I - I_i|, \ldots, |I + I_i|
\]

Z-成分数: \(\mu + m_i \)

\[
|I_i' \rangle = Q_{\lambda \mu} |I_i \rangle
\]

とし, \(|I_i \rangle \)と\(|I_i' \rangle\)は"同じ量子数を持たなければならない"

\[
|I - I_i| \leq |I_f| \leq |I + I_i|
\]

\[
m_f = \mu + m_i
\]

バリティ: \((-)^I (E), \ (-)^{I+1} (M)\)

例)

\[
2^+ \to 0^+ \quad : \quad E2
\]

\[
3^- \to 0^+ \quad : \quad E3
\]

\[
4^+ \to 2^+ \quad : \quad (E2, E4, M3, E6, M5)
\]

\[
3^+ \to 2^+ \quad : \quad (E2, M1), E4, M3, M5
\]

unnatural parity

\[
2^+ \to 3^- \quad : \quad (E1, E3, E5, M2, M4)
\]
和則

\[T_{i\rightarrow f} \sim |\langle \Psi_f | \frac{1}{2} Z_i | \Psi_i \rangle |^2 \] (E19場合)

\[T_{tot} = \frac{\Sigma}{T} T_{i\rightarrow f} \sim \left(\frac{\Sigma}{T} \langle \Psi_i | \frac{1}{2} Z_i | \Psi_i \rangle \right) \times \left(\langle \Psi_f | \frac{1}{2} Z_i | \Psi_i \rangle \right) \]

\[\sim \langle \Psi_i | \left(\frac{1}{2} Z_i \right)^2 | \Psi_i \rangle \]

\[S_i = \frac{\Sigma}{T} (E_f - E_i) T_{i\rightarrow f} \] (Energy Weighted Sum Rule)

(note)

\[\frac{1}{2} \langle 0 | [\hat{H}, [\hat{H}, \hat{H}]] | 0 \rangle \]

\[= \frac{1}{2} \langle 0 | \hat{H} (\hat{H}^2 - \hat{H}\hat{H}) - (\hat{H}\hat{H} - \hat{H}^2) \hat{H} | 0 \rangle \]

\[= \langle 0 | \hat{H}^3 | 0 \rangle - \frac{1}{2} \langle 0 | \hat{H}^2 \hat{H} + \hat{H} \hat{H}^2 | 0 \rangle \]

\[= \langle 0 | \hat{H} \hat{H} \hat{H} | 0 \rangle - E_0 \langle 0 | \hat{H}^2 | 0 \rangle \]

\[= \frac{1}{G} \left(E_k - E_0 \right) |\langle k | \hat{H} | 0 \rangle|^2 \]
$S_1 = \frac{1}{2} \langle \Psi_c | [\hat{H}, [\hat{H}, \hat{H}]] | \Psi_c \rangle$

$\hat{H} = \sum_i \hat{\mathbf{z}}_i$

(note) $[\hat{H}, [\hat{H}, \hat{H}]] = \left[\sum_i \frac{\hat{p}_i^2}{2m} + \sum_{ij} \hat{v}_{ij}, \sum_i \hat{\mathbf{z}}_i \right]$

$= -\sum_i \frac{\hbar}{m} \cdot \frac{\hat{p}_i}{m}$

$[\hat{H}, [\hat{H}, \hat{H}]] = \left[\sum_i \hat{\mathbf{z}}_i, -\frac{\hbar}{m} \sum_i \hat{p}_i \right]$

$= -\sum_i \frac{(i\hbar)^2}{m} = -\frac{(i\hbar)^2}{m} \cdot \hat{\mathbf{z}}$

$\downarrow S_1 = \frac{\hbar^2}{2m} \cdot \hat{\mathbf{z}}$ (Thomas-Reiche-Kuhn和則)

・和則

・励起状態への遷移確率から基底状態の情報を得られる

・計算や実験データのチェックに使える