Absorption cross sections

Reaction processes

Elastic scatt.
Inelastic scatt.
Transfer reaction
Compound nucleus formation (fusion)

Loss of incident flux (absorption)

reaction cross sections

total scattering cross section - elastic cross section

$$\sigma_R = \sigma_{tot} - \sigma_{el}$$

- fusion
- inelastic
- transfer

Interaction cross sections and halo nuclei

transmission method

Interaction cross sections and halo nuclei

Discovery of halo nuclei

I. Tanihata, T. Kobayashi, O. Hashimoto et al., PRL55('85)2676; PLB206('88)592

Reaction cross sections

Glauber theory (optical limit approximation: OLA)

$$\sigma_R \sim 2\pi \int_0^\infty b db \left[1 - \exp\left(-\sigma_{NN} \int d^2 s \rho_P^{(z)}(s) \rho_T^{(z)}(s-b)\right) \right]$$

Straight-line trajectory (high energy scattering)
 →adiabatic approximation
 >simplified treatment for multiple scattering: (1 - x)^N → e^{-Nx}

Density distribution which explains the experimental σ_R

r (fm) M. Fukuda et al., PLB268('91)339

$$\sigma_R \sim 2\pi \int_0^\infty b db \left[1 - \exp\left(-\sigma_{NN} \int d^2 s \rho_P^{(z)}(s) \rho_T^{(z)}(s-b)\right) \right]$$

Heavy-ion subbarrier fusion reactions

Inter-nucleus potential

above barriersub-barrierdeep subbarrier

Two forces: 1. Coulomb force Long range, repulsive 2. Nuclear force Short range, attractive

Potential barrier due to the compensation between the two (Coulomb barrier) Three important features of heavy-ion reactions

- 1. Coulomb interaction: important
- 2. Reduced mass: large \longrightarrow

$$\mu = \frac{m_T \, m_P}{m_T + m_P}$$

3. Strong absorption inside the Coul. barrier

(semi-) classical picture concept of trajectory

Automatic compound nucleus formation once touched (assumption of strong absorption)

Partial decomposition of reaction cross section

angular momentum

Taken from J.S. Lilley, "Nuclear Physics"

Fusion: compound nucleus formation

courtesy: Felipe Canto

classical fusion cross sections

<u>σ_{fus} vs 1/E (~70's)</u>

Classical fusion cross section is proportional to 1/E:

Taken from J.S. Lilley, "Nuclear Physics"

Fusion cross sections at subbarrier energies

Fusion cross sections of structure-less nuclei (a potential model)

Simple potential model:

➢OK for relatively light systems
 ➢underestimates σ_{fus} for heavier systems at subbarrier energies

cf. seminal work: R.G. Stokstad et al., PRL41('78)465 PRC21('80)2427

Strong target dependence at $E < V_b$

low-lying collective excitations?

Effect of deformation on subbarrier fusion

- The barrier is lowered for $\theta=0$ because an attraction works from large distances.
- The barrier increases for $\theta = \pi/2$. because the rel. distance has to get small for the attraction to work

Investigate nuclear shape through barrier distribution

By taking the barrier distribution, one can very clearly see the difference due to β_4 !

→ Fusion as a quantum tunneling microscope for nuclei

Fusion of medium-heavy systems:

Compound nucleus: automatically formed once touched (strong absorption)

➢ Fusion of heavy and super-heavy systems Large probability of re-separation (due to the strong Coulomb repulsion) [This happens for $Z_1 * Z_2 > 1600 ~ 1800$.]

C.-C. Sahm et al., Z. Phys. A319('84)113


```
typical time-scale (sec.)
        contact
10-22
                                                    Quasi-fission
        fusion
                              CN
10-20
                                                            fission
        evaporation
                                                          cannot distinguish
                                                          experimentally
                      ER
10-19
                                n
                                                         CN = compound nucleus
~10<sup>-18</sup>
                           experimentally detected
                                                         ER = evaporation residue
```

Heavy-ion fusion for SHE

island of stability around Z=114, N=184
 W.D. Myers and W.J. Swiatecki (1966), A. Sobiczewski et al. (1966)
 → modern calculations: Z=114,120, or 126, N=184

e.g., H. Koura et al. (2005)

Yuri Oganessian

Element 113 (RIKEN, K. Morita et al.)

70 Zn (Z=30) + 209 Bi (Z=83) $\longrightarrow ^{278}$ 113 + n

K. Morita et al., J. Phys. Soc. Jpn. 81('12)103201 $\sigma_{\text{ER}} = 22^{+20}_{-13}$ fb only 3 events for 553 days experiment

Theory: Lagenvin approach

Chemistry of superheavy elements

 \triangleright Are they here in the periodic table?

➤That is, does e.g., Lv show the same chemical properties as O, S, Se, Te, and Po?

relativistic effect : important for large Z

 $E = mc^2$

Solution of the Dirac equation (relativistic quantum mechanics) for a hydrogen-like atom:

$$E_{1S} = mc^2 \sqrt{1 - (Z\alpha)^2} \sim mc^2 \left(1 - \frac{(Z\alpha)^2}{2} - \frac{(Z\alpha)^4}{8} + \cdots \right)$$

relativistic effect

Famous example of relativistic effects: the color of gold

1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo

Gold looked like silver if there was no relativistic effects!

$$\uparrow$$

2.4 eV

3.7 eV

no color

absorbed

Chemistry of superheavy elements

How do the relativistic effects alter the periodic table for SHE? \rightarrow a big open question