Shape, interaction, and excitation structures of nuclei \leftarrow scattering expt. cf. Experiment by Rutherford (α scatt.)

http://www.th.phys.titech.ac.jp/~muto/lectures/QMII11/QMII11_chap21.pdf K. Muto (TIT)

between *a* and *A*

K. Sekiguchi et al., PRC89('14)064007

✓ elastic scattering

✓ inelastic scattering

fundamental interaction between a and A

excitation spectrum of a nucleus *A*

 E_a

✓ transfer reaction
 (below: an example
 of pick-up reaction)

✓ transfer reaction(below: an exampleof stripping reaction)

 \checkmark fusion reaction

- interaction between *a* and *A*
- structure of *a* and *A*

$$\checkmark$$
 (K⁻, π ⁻) reaction

O. Hashimoto and H. Tamura, Prog. in Part. and Nucl. Phys. 57 ('06)564

excitation spectrum of a hypernucleus A_A

 $A_{gs} \rightarrow A_{\Lambda}$

 \checkmark (e,e'K⁺) reaction

S.N. Nakamura et al., PRL110('13)012502

T. Gogami, Ph.D. Thesis (Tohoku U.) 2014

L. Tang et al., PRC90('14)034320

Cross sections

event rate (the number of event per unit time per target nucleus) : proportional to the incident flux

Ì

R = N

cross section

event rate (the number of event per unit time per target nucleus) : proportional to the incident flux

cross section

$$\longrightarrow R = N_{\mathsf{T}} \sigma j$$

differential cross sections (angular distribution)

$$dR(\theta,\phi) = N_{\mathsf{T}} \cdot \frac{d\sigma}{d\Omega} \cdot j \cdot d\Omega \qquad \sigma = \int d\Omega \frac{d\sigma}{d\Omega}$$

units: 1 barn = 10^{-24} cm² = 100 fm² (1 mb = 10^{-3} b = 0.1 fm²)

Cross sections (experiments)

beam intensity: $I = j \cdot S$

the number of target nucleus: $N_{\mathsf{T}} = S \cdot t \cdot \rho_{\mathsf{T}}$

$$dR(\theta, \phi) = I \cdot \frac{d\sigma}{d\Omega} \cdot t\rho_{\top} \cdot d\Omega \underbrace{\epsilon}_{\text{efficiency}} \overset{\text{detection}}{\overset{\text{detection}}}{\overset{\text{detection}}{\overset{\text{detection}}}{\overset{\text{detection}}{\overset{\text{detection}}{\overset{\text{detection}}{\overset{\text{detection}}{\overset{\text{detection}}}{\overset{\text{detection}}}{\overset{\text{detection}}}{\overset{\text{detection}}}{\overset{\text{detection}}}{\overset{\text{detection}}}{\overset{\text{detection}}}{\overset{\text{detection}}}{\overset{\text{detection}}}{\overset{\text{detection}}}{\overset{\text{detection}}}{\overset{\text{detection}}}}}}}}}}}}}}}}}}}$$

Cross sections (theory)

center of mass frame

Cross sections

Born approximation

orn approximation

$$\psi_{f}(r) = e^{ip_{f} \cdot r/\hbar}$$

$$\psi_{i}(r) = e^{ip_{i} \cdot r/\hbar}$$

$$(-\frac{\hbar^{2}}{2\mu}\nabla^{2} + V(r) - E)\psi(r) = 0$$

perturbation

transition rate for elastic scattering:

$$W_{fi} = \frac{2\pi}{\hbar} \int \frac{dp_f}{(2\pi\hbar)^3} |\langle \psi_f | V | \psi_i \rangle|^2 \delta(E_f - E_i)$$

= $\frac{\mu p_i}{4\pi^2 \hbar^4} \int d\Omega \left| \tilde{V}(q) \right|^2$

$$\widetilde{V}(\boldsymbol{q}) = \int d\boldsymbol{r} e^{i(\boldsymbol{p}_i - \boldsymbol{p}_f) \cdot \boldsymbol{r} / \hbar} V(\boldsymbol{r}) \equiv \int d\boldsymbol{r} e^{-i\boldsymbol{q} \cdot \boldsymbol{r}} V(\boldsymbol{r})$$

Born approximation

 $\psi_f(\boldsymbol{r}) = e^{i \boldsymbol{p}_f \cdot \boldsymbol{r} / \hbar}$ $\psi_i(\boldsymbol{r}) = e^{i\boldsymbol{p}_i\cdot\boldsymbol{r}/\hbar}$ V(r)θ

$$W_{fi} = \frac{\mu p_i}{4\pi^2 \hbar^4} \int d\Omega \left| \tilde{V}(\boldsymbol{q}) \right|^2 \qquad \begin{array}{c} \text{momentum} \\ \text{transfer} \\ \downarrow \\ \tilde{V}(\boldsymbol{q}) = \int d\boldsymbol{r} e^{i(\boldsymbol{p}_i - \boldsymbol{p}_f) \cdot \boldsymbol{r}/\hbar} V(\boldsymbol{r}) \equiv \int d\boldsymbol{r} e^{-i\boldsymbol{q} \cdot \boldsymbol{r}} V(\boldsymbol{r}) \end{array}$$

incident flux: $j_{\text{inc}} = \rho_i v = p_i / \mu$

$$\sigma = \frac{W_{fi}}{j_{\text{inc}}} = \int d\Omega \frac{\left| \frac{\mu^2}{4\pi^2 \hbar^4} \right| \tilde{V}(q) \right|^2 }{\left| \frac{\theta}{2\pi^2 \hbar^4} \right|^2}$$

$$= \frac{d\sigma}{d\Omega}$$

$$p_f \qquad q\hbar = 2p_i \sin \frac{\theta}{2}$$

Electron scattering

$$V(r) = -e^2 \int dr' \frac{\rho(r')}{|r - r'|}$$
$$\frac{d\sigma}{d\Omega} = \frac{Z_P^2 e^4}{(4E \sin^2 \theta/2)^2} |F(q)|^2$$
$$= \left(\frac{d\sigma_{\text{Ruth}}}{d\Omega}\right) |F(q)|^2$$

Form factor

$$F(q) = \int e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} \rho(\boldsymbol{r}) d\boldsymbol{r}$$

* relativistic correction:

cf. electron scattering off unstable nuclei (SCRIT)

Distorted Wave Born approximation (DWBA)

$$\left(-\frac{\hbar^2}{2\mu}\nabla^2 + \frac{V(r)}{P} - E\right)\psi(r) = 0$$
perturbation

$$\implies \left(-\frac{\hbar^2}{2\mu}\nabla^2 + V_0(r) + \frac{V(r) - V_0(r)}{\mu} - E\right)\psi(r) = 0$$

perturbation

✓ inelastic scattering✓ transfer reactions

Optical model

Reaction processes

Elastic scatt.
Inelastic scatt.
Transfer reaction
Compound nucleus formation (fusion)

Loss of incident flux (absorption)

Optical potential

$$V_{\text{opt}}(r) = V(r) - iW(r)$$
 (W > 0)
 $\longrightarrow \nabla \cdot j = \dots = -\frac{2}{\hbar}W|\psi|^2$

(note) Gauss's law

$$\int_{S} \boldsymbol{j} \cdot \boldsymbol{n} \, dS = \int_{V} \boldsymbol{\nabla} \cdot \boldsymbol{j} \, dV$$

$$-\frac{\hbar^2}{2\mu}\nabla^2 + \frac{Z_P Z_T e^2}{r} + V_{\text{opt}}(r) - E \bigg) \psi(r) = 0$$

Woods-Saxon + volume & surface imaginary parts

H. Sakaguchi et al., PRC26 (1982) 944

Appendix: DWBA in ocean acoustics

Fishfinder

(backward) scattering of (ultra-)sonic waves due to fish etc.

 $dR(\theta,\phi) = N_{\mathsf{T}} \cdot \frac{d\sigma}{d\Omega} \cdot j \cdot d\Omega$ $N_{\mathsf{T}} = \frac{\frac{dR}{d\Omega}}{j \cdot \frac{d\sigma}{j\Omega}}$

one can know the number of fish $N_{\rm T}$ if one knows the differential cross sections

https://www.furuno.co.jp/technology/about/fishfinder1.html

Use of <u>the distorted wave Born approximation</u> to predict scattering by inhomogeneous objects: <u>Application to</u> squid

Benjamin A. Jones,^{a)} Andone C. Lavery, and Timothy K. Stanton Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543-1053 J. Accoust. Soc. Am. 125 ('09) 73 $10\log_{10}\sigma$ 0° -60 -80 -100 -40 45° Target Strength (dB) -60 -80 100 90° -60 -80 -100 -40 135° Modeling of squid -60 -80 -100 10^{3} 10^{4} 10 Frequency (Hz) DWBA: local wave number Arms-folded numerical model (no fins) Analytical prolate spheroid model <---inside a squid Usable band in the experiment

W.-J. Lee, A.C. Lavery, T. Stanton, J. Accoust. Soc. Am. 131 ('12) 4461

Absorption cross sections

Reaction processes

Elastic scatt.
Inelastic scatt.
Transfer reaction
Compound nucleus formation (fusion)

Loss of incident flux (absorption)

reaction cross sections

total scattering cross section - elastic cross section

$$\sigma_R = \sigma_{tot} - \sigma_{el}$$

- fusion
- inelastic
- transfer

Interaction cross sections and halo nuclei

transmission method

Interaction cross sections and halo nuclei

Discovery of halo nuclei

I. Tanihata, T. Kobayashi, O. Hashimoto et al., PRL55('85)2676; PLB206('88)592

Reaction cross sections

Glauber theory (optical limit approximation: OLA)

$$\sigma_R \sim 2\pi \int_0^\infty b db \left[1 - \exp\left(-\sigma_{NN} \int d^2 s \rho_P^{(z)}(s) \rho_T^{(z)}(s-b)\right) \right]$$

Straight-line trajectory (high energy scattering)
 Adiabatic approximation
 Simplified treatment for multiple scattering: (1 − x)^N → e^{−Nx}

Density distribution which explains the experimental σ_R

r (fm) M. Fukuda et al., PLB268('91)339

$$\sigma_R \sim 2\pi \int_0^\infty b db \left[1 - \exp\left(-\sigma_{NN} \int d^2 s \rho_P^{(z)}(s) \rho_T^{(z)}(s-b)\right) \right]$$