不安定核の低エネルギー反応

-核融合反応 -対移行反応 -弾性散乱

核融合反応: 複合核生成反応

<u>*どのように核融合反応断面積を測定するのか?</u>

✓蒸発残留核からの特性X線の測定

✓蒸発残留核からのガンマ線の測定

効率の良い検出器が必要、バックグラウンドの見積もりが問題 長寿命のアイソマーがあると使えない

✓蒸発残留核からのα崩壊の測定 α放出核にのみ用いることができる 超重核合成反応では標準的な方法

✓核融合生成物の直接測定(蒸発残留核+核分裂)

最も不定性がない方法 蒸発残留核とビームを分けるのに実験的技術が必要 核分裂片:広い角度をカバーする必要性

J.R. Leigh et al., PRC52('95)3151

beam-like 粒子: 蒸発残留核の 10⁴~10¹² 倍の強度

<u>蒸発残留核の測定</u>

velocity filter 等を用いてうまく蒸発残留核と beam-like 粒子をわける

J.R. Leigh et al., PRC52('95)3151

重イオン核融合反応

• Double Folding Potential

$$V_{DF}(\mathbf{r}) = \int d\mathbf{r}_1 d\mathbf{r}_2 \rho_1(\mathbf{r}_1) \rho_2(\mathbf{r}_2) \\ \times v_{nn}(\mathbf{r} + \mathbf{r}_2 - \mathbf{r}_1)$$

(微視的ポテンシャルの直接 項に相当)

$$ho(r)\sim rac{
ho_0}{1+\exp[(r-R_d)/a_d]} \ a_d\sim 0.54 ~({
m fm})$$

• Phenomenological potential

$$V_{WS}(r) = -\frac{V_0}{1 + \exp[(r - R_0)/a]}$$

 $a \sim 0.63$ (fm)

核融合反応断面積の大きな増大

ポテンシャル模型: V(r) + 吸収

cf. 初期の実験:

R.G. Stokstad et al., PRL41('78) 465

<u>¹⁶O+¹⁵⁴Sm 核融合反応に対する ¹⁵⁴Sm の変形の効果</u>

トンネル確率は障壁の変化に敏感 -> 核融合反応:核構造に対する 興味深いプローブ 核融合断面積の標的核依存性

(参考)より一般的には結合チャンネル法で説明される

結合チャンネル方程式

$$\begin{bmatrix} -\frac{\hbar^2}{2\mu} \nabla^2 + V_0(r) + \epsilon_k - E \end{bmatrix} \psi_k(r) + \sum_{k'} \langle \phi_k | V_{\text{coup}} | \phi_{k'} \rangle \psi_{k'}(r) = 0$$

励起エネルギー

励起オペレーター

不安定核を用いた核融合反応

安定核の核融合反応では、原子核間相対運動と散乱核の 内部自由度(内部励起)が結合することで、核融合反応断面積 が増大(トンネル領域)

不安定核(弱束縛核)を用いるとどうなるか? 核融合反応断面積は増大?変化なし?減少?

2つの効果

2つの効果

- 1. ハロー構造による重イオン間 ポテンシャルの低下
- 2. 分解 (breakup) の効果

これはあまり自明ではない

- •分解すると障壁の低下がなく なるので核融合反応断面積は 減少?
- 安定核と同様、結合チャンネル 効果により断面積は増大?
- •もっと複雑な分解の動的な効果?

L.F. Canto, P.R.S. Gomes, R. Donangelo, and M.S. Hussein, Phys. Rep. 424('06)1

 ${}^{6}\text{He} + {}^{238}\text{U}$

▶核融合反応断面積は、ポテン シャル模型の予測と矛盾してい ない(ように見える)

ポテンシャルの低下による 増幅と分解の効果による減少 が打ち消しあい?

▶大きな2中性子移行反応 の断面積

R. Raabe et al., Nature 431 ('04)823

大きな 2n 移行断面積

中性子過剰核の反応では (分解に加えて) 核子移行がキーワードの一つ

特にダイ・ニュートロン相関との 関係で対移行反応は今後ますます 重要な研究課題

対相関と対移行反応

対移行反応の確率は対相関を強く反映する

対移行の確率: $P_{tr} \sim \frac{d\sigma_{tr}}{d\sigma_R}$

W. von Oertzen et al., Z. Phys. A326('87)463

J. Speer et al., PLB259('91)422

 $R_{\min} = d(A_P^{1/3} + A_T^{1/3})$ はラザフォード軌道の最近接距離

(補足)ラザフォード軌道

* 高田健次郎先生 「インターネットセミナー」 2-5-A章が分かりやすい

クーロンカ $V_c(r) = \frac{Z_P Z_T e^2}{2}$

による古典的な軌道

最近接距離 (the distance of closest approach)

$$d = \frac{Z_P Z_T e^2}{2E} \left[1 + \sqrt{1 + \cot^2 \frac{\theta}{2}} \right] \qquad \qquad \theta は散乱角$$

 \bigwedge

最近接距離は入射エネルギー E と散乱角 θ の関数

対相関と対移行反応

対移行反応の確率は対相関を強く反映する

- ▶¹¹²Sn + ¹²⁰Sn 反応では、単純な (P_{1n})² に比べて2中性子移行 確率が増大
- ▶対相関が働かない(セミ) 魔法数の原子核は2中性子移行確率 の増大は見られない
- 2中性子移行確率は対相関に敏感

対相関と対移行反応

対移行反応の確率は対相関を強く反映する

(注)ペアリングの強い系でも 1n 移行の方が 2n 移行に比べて とても多い

<u>1ステップか2ステップか?</u>

1ステップ(simultaneous/direct)

2ステップ(sequential):

1ステップか2ステップか?

¹²⁴Sn(⁵⁸Ni, ⁶⁰Ni)¹²²Sn 反応

1ステップと2ステップの両方が重要

中性子過剰核を用いた対移行反応

中性子過剰核を用いると、 中間状態(の多くが)非束縛 反応機構はどう変わる? これからの課題

<u>ボロミアン核の対移行反応:実験データ</u>

A. Chatterjee et al., PRL101('08)032701 ▶1*n* 移行に比べて 2*n* 移行が主

中性子移行反応は原子力の観点からも重要

http://asrc.jaea.go.jp/15panhu/kagaku/ 32kagaku/32interview.pdf

中性子誘起核分裂の間接測定

JAEA でプロジェクトが進行中

ハロー核の弾性散乱

Optical model

Reaction processes

Elastic scatt.
Inelastic scatt.
Transfer reaction
Compound nucleus formation (fusion)

Loss of incident flux (absorption)

Optical potential

$$V_{\text{opt}}(r) = V(r) - iW(r)$$
 (W > 0)
 $\longrightarrow \nabla \cdot j = \dots = -\frac{2}{\hbar}W|\psi|^2$

(note) Gauss's theorem

$$\int_{S} \boldsymbol{j} \cdot \boldsymbol{n} \, dS = \int_{V} \boldsymbol{\nabla} \cdot \boldsymbol{j} \, dV$$

<u>ハロー核の弾性散乱</u>

FIG. 2. ΔE -E scatter plots for the reactions ¹⁰Be + ⁶⁴Zn (top) and ¹¹Be + ⁶⁴Zn (bottom), at $\theta = 35^{\circ}$.

回転励起のエネルギーは小 → (クーロン)励起されやすい 弾性散乱のフラックスの一部が非弾性散乱に流れ、

弾性散乱の断面積が減る cf. 長いレンジの吸収