

Extra binding for N or Z = 2, 8, 20, 28, 50, 82, 126 (magic numbers) \square Very stable

 ${}^{4}{}_{2}\text{He}_{2}, {}^{16}{}_{8}\text{O}_{8}, {}^{40}{}_{20}\text{Ca}_{20}, {}^{48}{}_{20}\text{Ca}_{28}, {}^{208}{}_{82}\text{Pb}_{126}$

期末レポート(必須)+出席点

質問をした日は出席点1。 <u>質問を考えながら講義を聴いてください。</u>

成績の基準:レポートが良く書けていて、出席点3以上 (3回以上質問をする)→A

AAが欲しい場合は4回以上質問してください。

Magic Numbers

cf. N,Z = 2, 8, 20, 28, 50, 82, 126 (魔法数)に対して束縛エネルギー大

I. Bentley et al., PRC93 ('16) 044337

Fission fragment mass distribution for n_{th} + ²³⁵U reaction

超重元素(超重原子核)

原子核の安定領域の理論的予言 「安定の島」

(note) 原子の魔法数 (貴ガス・希ガス) He (Z=2), Ne (Z=10), Ar (Z=18), Kr (Z=36), Xe (Z=54), Rn (Z=86)

電子の殻構造

Magic numbers Hydrogen-like potential: $V(r) = -\frac{Ze^2}{r}$

r

Magic numbers

Hydrogen-like potential:

 $V(r) = -\frac{Ze^2}{2}$

 $E_n = -\frac{(Z\alpha)^2}{2r^2}mc^2$

3S	3P	3D
2S	2P	

 $\alpha = \frac{e^2}{\hbar c} \sim \frac{1}{137}$

 $n = n_r + l + 1$

1**S**

Magic numbers		-	つ
Hydrogen-like pote	ential:	$V(r) = -\frac{Ze}{r}$	Z
degeneracy = 2 (s	* $(2 l + 1)$ pin x l_z)	$E_n = -$	$-\frac{(Z\alpha)^2}{2n^2}mc^2$
3S [2] 3P	[6] 3D	[10]	$\alpha = \frac{e^2}{\tau_{\rm e}} \sim \frac{1}{127}$
2S [2] 2P	[6]	1	$nc 137$ $n = n_r + l + 1$

1S [2]

Magic numbers		
Hydrogen-like pot	ential: $V(r)$	$=-\frac{Ze^2}{r}$
degeneracy = 2	2 * (2 l + 1) (spin x l_z)	$E_n = -\frac{(Z\alpha)^2}{2n^2}mc^2$
3S [2] 3P	[6] 3D [10]	$\alpha = \frac{e^2}{2} \sim \frac{1}{2}$
2S [2] 2P	[6]	$\hbar c$ 137 m - m + l + 1
	⇒ He	n - nr + l + 1

Magic numbers Hydrogen-like potential: $V(r) = -\frac{Ze^2}{r}$

degeneracy = 2 * (2 *l*+1) $V_{ee} = -\frac{(Z\alpha)^2}{2n^2} mc^2$ $3S [2] = 3P [6] = Ne = -\frac{(Z\alpha)^2}{2n^2} mc^2$ $\alpha = \frac{e^2}{\hbar c} \sim \frac{1}{137}$ $n = n_r + l + 1$

Magic numbers Hydrogen-like potential: $V(r) = -\frac{Ze^2}{r}$

(note) Atomic magic numbers (Noble gas) He (Z=2), Ne (Z=10), Ar (Z=18), Kr (Z=36), Xe (Z=54), Rn (Z=86)

Shell structure

Similar attempt in nuclear physics: independent particle motion in a potential well

Woods-Saxon potential $V(r) = -V_0/[1 + \exp((r - R_0)/a])$

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(r) - \epsilon\right]\psi(r) = 0$$
$$\psi(r) = \frac{u_l(r)}{r}Y_{lm}(\hat{r}) \cdot \chi_{ms}$$

Nuclear magic numbers: 2, 8, 20, 28, 50, 82, 126

Nuclear magic numbers: 2, 8, 20, 28, 50, 82, 126

Woods-Saxon itself does not provide the correct magic numbers (2,8,20,28, 50,82,126).

Mayer and Jensen (1949): Strong spin-orbit interaction

$$-\frac{\hbar^2}{2m}\nabla^2 + V(r) + V_{ls}(r)\mathbf{l} \cdot \mathbf{s} - \epsilon \bigg] \psi(r) = 0$$

$$V_{ls}(r) \sim -\lambda \frac{1}{r} \frac{dV}{dr}$$
 $(\lambda > 0)$

ノーベル物理学賞

ロレーザー物理学 (2018)

アシュキン ムル ストリックランド□ 原子核物理学 (1963)

□ 放射線物理学 (1903)

ウィグナー メイヤー イェンセン ベクレル キュリー キュリー

「お母さん、ノーベル賞 をもらう」 シャロン・バーチ著 (工作舎) 1 マリー・スクロドフスカ・キュリー (1903:ノーベル物理学賞。放射能の研究 /1911:ノーベル化学賞。ラジウムの発見)
 2 リーゼ・マイトナー

(核分裂を発見しながら1944年のノーベル化学賞 をハーンに独り占めにされる)

3 エミー・ネーター

(ノーベル賞に数学賞があればまちがいなく受賞 に値した抽象代数学の天才)

7 マリア・ゲッペルト・メイヤー

(1963:ノーベル物理学賞。原子核の殻模型の研究) 10 呉健雄

(パリティ非保存の実験的検証をしたが、1957年の ノーベル物理学賞は李政道と楊振寧に)

14 ジョスリン・ベル・バーネル (パルサーを発見したが、1974年の物理学賞は 彼女の上司ヒューイッシュに)

仙台市民図書館

Sharon Bertch McGrayne

George F. Bertsch (University of Washington)

Woods-Saxon itself does not provide the correct magic numbers (2,8,20,28, 50,82,126).

Mayer and Jensen (1949): Strong spin-orbit interaction

$$-\frac{\hbar^2}{2m}\nabla^2 + V(r) + V_{ls}(r)\mathbf{l} \cdot \mathbf{s} - \epsilon \bigg] \psi(r) = 0$$

$$V_{ls}(r) \sim -\lambda \frac{1}{r} \frac{dV}{dr}$$
 $(\lambda > 0)$

軌道運動とスピンは独立の自由度

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(r) - \epsilon\right]\psi(r) = 0 \implies \psi_{lmm_s}(r) = \frac{u_l(r)}{r}Y_{lm}(\hat{r}) \cdot \chi_{m_s}$$

スピン・軌道力

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V(r) + V_{ls}(r) l \cdot s - \epsilon \end{bmatrix} \psi(r) = 0$$
(note) $j = l + s$ = $(j^2 - l^2 - s^2)/2$
l と s を結合して j を組む。
 $\rightarrow j = l + - 1/2$

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(r) - \epsilon\right]\psi(r) = 0 \implies \psi_{lmm_s}(r) = \frac{u_l(r)}{r}Y_{lm}(\hat{r}) \cdot \chi_{m_s}$$

スピン・軌道力

 $\overline{}$

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V(r) + V_{ls}(r) \mathbf{l} \cdot s - \epsilon \end{bmatrix} \psi(r) = 0$$
(note) $\mathbf{j} = \mathbf{l} + s$ $\implies \mathbf{l} \cdot s = (\mathbf{j}^2 - \mathbf{l}^2 - s^2)/2$
 $\mathbf{l} \succeq s$ を結合して \mathbf{j} を組む。

$$\psi_{jlm}(r) = rac{u_{jl}(r)}{r} \mathcal{Y}_{jlm}(\hat{r})$$

 $\mathcal{Y}_{jlm}(\hat{r}) = \sum_{m_l,m_s} \langle l \ m_l \ 1/2 \ m_s | j \ m
angle Y_{lm_l}(\hat{r}) \chi_{m_s}$

$$\begin{aligned} j^{2} |\mathcal{Y}_{jlm}\rangle &= j(j+1) |\mathcal{Y}_{jlm}\rangle \\ j_{z} |\mathcal{Y}_{jlm}\rangle &= m |\mathcal{Y}_{jlm}\rangle \\ l^{2} |\mathcal{Y}_{jlm}\rangle &= l(l+1) |\mathcal{Y}_{jlm}\rangle \\ s^{2} |\mathcal{Y}_{jlm}\rangle &= 3/4 |\mathcal{Y}_{jlm}\rangle \end{aligned}$$

 $l \geq s$ を結合してjを組む。

$$\psi_{jlm}(r) = \frac{u_{jl}(r)}{r} \mathcal{Y}_{jlm}(\hat{r})$$

$$egin{aligned} j^2 |\mathcal{Y}_{jlm}
angle &= j(j+1) |\mathcal{Y}_{jlm}
angle \ j_z |\mathcal{Y}_{jlm}
angle &= m |\mathcal{Y}_{jlm}
angle \ l^2 |\mathcal{Y}_{jlm}
angle &= l(l+1) |\mathcal{Y}_{jlm}
angle \ s^2 |\mathcal{Y}_{jlm}
angle &= rac{3}{4} |\mathcal{Y}_{jlm}
angle \end{aligned}$$

(note)
$$j = l + s$$
 \longrightarrow $l \cdot s = (j^2 - l^2 - s^2)/2$

$$\begin{array}{l}
\left(l \cdot s | \mathcal{Y}_{jlm} \right) = \frac{1}{2} \left(j(j+1) - l(l+1) - \frac{3}{4} \right) | \mathcal{Y}_{jlm} \right) \\
l \cdot s | \mathcal{Y}_{jlm} \right) = \frac{l}{2} | \mathcal{Y}_{jlm} \right) \quad (j = l+1/2) \\
l \cdot s | \mathcal{Y}_{jlm} \right) = -\frac{l+1}{2} | \mathcal{Y}_{jlm} \right) \quad (j = l-1/2)
\end{array}$$
符号が逆

<u>jj 結合殻模型</u>

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(r) + V_{ls}(r)\boldsymbol{l}\cdot\boldsymbol{s} - \boldsymbol{\epsilon}\right]\psi(r) = 0$$

$$l \cdot s |\mathcal{Y}_{jlm}\rangle = \frac{l}{2} |\mathcal{Y}_{jlm}\rangle \quad (j = l + 1/2)$$

 $l \cdot s |\mathcal{Y}_{jlm}\rangle = -\frac{l+1}{2} |\mathcal{Y}_{jlm}\rangle \quad (j = l - 1/2)$ 符号が逆!

$$j = l \pm 1/2$$
 で準位が分離

$$j = l - 1/2$$

[2j+1=2l](例えば) $j = 5/2$
[6] $j = l \pm 1/2$
縮退度
[2(2l+1)] $j = l + 1/2$
[2j+1=2l+2][14] $j = 7/2$
[8]

 $j = l \pm 1/2$ で準位が分離: *l* が大きくなればなるほど 分離は大

* ただし、スピン平均はゼロ: + $\frac{l}{2}(2(l+1/2)+1) - \frac{l+1}{2}(2(l-1/2)+1) = 0$

Single particle spectra

²⁰⁹Bi (Z=83)

FIG. 3.6. Low-lying single-particle levels of ²⁰⁹Bi.

- •How to construct V(r) microscopically?
- •Does the independent particle picture really hold?

 \implies Later in this course

何故、閉殻の原子核は安定になるのか?

準位密度

準位密度に濃淡があれば、下から数えて濃淡の終わりまで準位が つまると(図の1の場合)、均一の場合に比べてエネルギーが小さい

1n separation energy: $S_n (A,Z) = B(A,Z) - B(A-1,Z)$

生命誕生のための幸運な偶然

原子の魔法数 電子の数が 2, 10, 18, 36, 54, 86

不活性ガス:He, Ne, Ar, Kr, Xe, Rn

参考:望月優子 ビデオ「元素誕生の謎にせまる」

<mark>原子核の魔法数</mark> 陽子または中性子の数が 2, 8, 20, 28, 50, 82, 126 の時安定

- 酸素元素は元素合成
 の過程で数多く生成さ
 れた
- ➡→しかし、酸素は化学的 には「活性」
- ➡ 化学反応により様々な 複雑な物質をつくり生命 に至った

http://rarfaxp.riken.go.jp/~motizuki/contents/genso.html

shell model

angular momentum (spin) and parity for each configuration?

→ let us first investigate a single-j case

single-j level: one level with an angular momentum j

example: $j = p_{3/2}$

j

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc p_{3/2}$ can accommodate 4 nucleons $(j_z = +3/2, +1/2, -1/2, -3/2)$

i) 1 nucleon

 \bigcirc $I^{\pi} = 3/2^{-1}$

(there are 4 ways to occupy this level)

ii) 4 nucleons

 $\blacksquare I^{\pi} = 0^+$ $p_{3/2}$ $I = j_1 + j_2 + j_3 + j_4$

iii) 3 nucleons

 $p_{3/2}$ $I = j_1 + j_2 + j_3$

(there is only 1 way to occupy this level) parity: $(-1) \times (-1) \times (-1) \times (-1) = +1$

 $I^{\pi} = 3/2^{-1}$

(there are 4 ways to make a hole) parity: $(-1) \times (-1) \times (-1) = -1$

iii) 3 nucleons

 $I^{\pi} = 3/2^{-1}$

 $I = j_1 + j_2 + j_3$

 $p_{3/2}$

(there are 4 ways to make a hole) parity: $(-1) \times (-1) \times (-1) = -1$

iv) 2 nucleons

 $\begin{array}{c} \bullet \bigcirc \bigcirc \bullet & p_{3/2} \\ I = j_1 + j_2 \end{array}$

there are $4 \ge 3/2 = 6$ ways to occupy this level with 2 nucleons.

 $I^{\pi} = 0^{+} \text{ or } 2^{+} (= 1 + 5)$ $3/2 + 3/2 \longrightarrow I = 0, 1, 2, 3$

anti-symmetrization

i) 1 nucleon

(there are 4 ways to occupy this level)

ii) 4 nucleons

$$\begin{array}{c} \bullet \bullet \bullet \bullet & p_{3/2} \end{array} \begin{array}{c} \bullet \bullet \bullet \bullet & p_{3/2} \end{array} \begin{array}{c} \bullet \bullet \bullet & I^{\pi} \\ I = j_1 + j_2 + j_3 + j_4 \end{array}$$
 (the

 $I^{\pi} = 0^{+}$ (there is only 1 way to occupy this level)
parity: (-1) x (-1) x (-1) x (-1) = +1

example: (main) shell model configurations for ${}^{11}{}_5B_6$ cf. ${}^{12}C(e,e'K^+){}^{12}{}_{\Lambda}B$ (= ${}^{11}B+\Lambda$)

MeV

5.02 — 3/2⁻ 4.44 — 5/2⁻

2.12 _____ 1/2-

 $0 - 3/2^{-11} B_6$

cf. ${}^{12}C(e,e'K^+){}^{12}{}_{\Lambda}B$ (= ${}^{11}B+\Lambda$)

PHYSICAL REVIEW C 90, 034320 (2014) Experiments with the High Resolution Kaon Spectrometer at JLab Hall C and the new spectroscopy of ¹²_AB hypernuclei

example: (main) shell model configurations for ¹¹B cf. ¹²C(e,e'K⁺)¹² $_{\Lambda}$ B (=¹¹B+ Λ)

example: (main) shell model configurations for ¹¹B cf. ¹²C(e,e'K⁺)¹²_{Λ}B (=¹¹B+ Λ)

another example: (main) shell model configurations for ¹⁷F

MeV

3.10 _____ 1/2-

another example: (main) shell model configurations for ¹⁷F

