Heavy-ion fusion reactions of deformed nuclei : from the medium-heavy to the superheavy regions

Kouichi Hagino Tohoku University, Sendai, Japan

- 1. Nuclear deformation and barrier distribution
- 2. Hot fusion reactions for superheavy elements
- 3. TDHF + Langevin approach
- 4. Summary

Sakura-2019 "Nuclear Fission and Structure of Exotic Nuclei", March 25-27, 2019, JAEA

Nuclear Deformation

actinides

the role of deformation in heavy-ion reactions? J.-P. Delaroche et al., PRC81 ('10) 014303

Nuclear deformation and barrier distribution

Fusion barrier distribution [Rowley, Satchler, Stelson, PLB254('91)]

K.H., N. Takigawa, PTP128 ('12) 1061

can be used to identify the side/tip collisions

Application to hot fusion reactions

 ${}^{48}\text{Ca} + {}^{248}\text{Cm} \rightarrow {}^{296}_{116}\text{Lv}^*$

T. Tanaka et al., JPSJ 87 ('18) 014201 (also, Tanaka's talk this afternoon)

capture barrier distribution

S

cf. notion of compactness: D.J. Hinde et al., PRL74 ('95) 1295

S_{sd}

Hot fusion towards Z=119 and 120 nuclei

hot fusion reactions with ⁴⁸Ca:

$${}^{48}_{20}\text{Ca} + {}^{99}\text{Es} \rightarrow 119$$

$${}^{48}_{20}\text{Ca} + {}^{100}\text{Fm} \rightarrow 120$$

short lived →not available with sufficient amounts

 $^{48}Ca \rightarrow {}^{50}_{22}Ti, {}^{51}_{23}V, {}^{54}_{24}Cr \text{ projectiles}$

how much will cross sections be affected?

closed shell \rightarrow open shells

Role of magicity

can proceed deeper with less friction

K. Satou, H. Ikezoe et al., PRC73 ('06) 034609

cf. P. Moller et al., Z. Phys. A359 ('97) 251.

similar effect for ⁴⁸Ca?

TDHF + Langevin approach

cf. K. Washiyama and D. Lacroix, PRC78 ('08) 024610

 \rightarrow from TDHF to the dynamics of *R*

TDHF + Langevin approach

K. Sekizawa and K. H., arXiv: 1903.06386

cf. K. Washiyama and D. Lacroix, PRC78 ('08) 024610 → fro

 \rightarrow from TDHF to the dynamics of *R*

TDHF + Langevin approach

Summary

Reaction dynamics for hot fusion reactions to synthesize SHE

- Recent measurements of QEL barrier distributions with GARIS
 - ✓ ⁴⁸Ca + ²⁴⁸Cm, ²³⁸U
 - ✓ notion of compactness: ER formation with side collisions

more data coming soon

cf. the talk by T. Tanaka

- TDHF + Langevin model for hot fusion
 - ✓ not large effect of ⁴⁸Ca on R_{\min} → dynamics due to E^* and B_{fiss}

$$\begin{split} \sigma_{\mathsf{ER}}(^{48}\mathsf{Ca} + ^{254}\mathsf{Fm} \to ^{302}120) &\sim 100 \cdot \sigma_{\mathsf{ER}}(^{54}\mathsf{Cr} + ^{248}\mathsf{Cm} \to ^{302}120) \\ \sigma_{\mathsf{ER}}(^{48}\mathsf{Ca} + ^{257}\mathsf{Fm} \to ^{305}120) &\sim \sigma_{\mathsf{ER}}(^{54}\mathsf{Cr} + ^{248}\mathsf{Cm} \to ^{302}120) \end{split}$$

combination to multi-dim. Langevin calcualtions

