Di-neutron 相関研究の現状 と今後の展開

萩野浩一(東北大学)

 Di-neutron 相関とは?
クーロン分解
他のプローブ

 (核カ分解、nn運動量分布、対移行反応、 ノックアウト反応、2中性子崩壊)

まとめ Di-neutron 相関とは? 相関: $\langle AB \rangle \neq \langle A \rangle \langle B \rangle$ 例)¹⁸O = ¹⁶O + n + n cf. ¹⁶O + n : 3つの束縛状態(1d_{5/2}, 2s_{1/2}, 1d_{3/2}) i) 2中性子相関がない場合 $|nn\rangle = |(1d_{5/2})^2\rangle$ 中性子1を z_1 に置いたときの中性子2の分布:

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 z (fm) z (fm) z (fm) z (fm)

✓2つの粒子が独立に運動 ✓中性子1がどこにいても中性子2の分布は影響されない

 $\langle AB \rangle = \langle A \rangle \langle B \rangle$

Di-neutron 相関とは? 相関: $\langle AB \rangle \neq \langle A \rangle \langle B \rangle$ 例)¹⁸O = ¹⁶O + n + n cf. ¹⁶O + n : 3つの束縛状態($1d_{5/2}, 2s_{1/2}, 1d_{3/2}$) ii) 2中性子相関が同パリティ状態(束縛状態)にのみ働く場合 $|nn\rangle = \alpha |(1d_{5/2})^2\rangle + \beta |(2s_{1/2})^2\rangle + \gamma |(1d_{3/2})^2\rangle$ $z_1 = 1 \text{ fm}$ $z_1 = 2 \text{ fm}$ $z_1 = 3 \text{ fm}$ $z_1 = 4 \text{ fm}$

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 z (fm) z (fm) z (fm) z (fm)

✓中性子1とともに中性子2の分布が変化(2中性子相関)
✓ただし、中性子2は z₁ と -z₁の両方にピーク
→ このようなものは di-neutron 相関とは言わない

cf. F. Catara, A. Insolia, E. Maglione, and A. Vitturi, PRC29('84)1091

-6 -4 -2 0 2 4 6

z (fm) パリティ混合

-6 -4 -2 0 2 4 6 z (fm)

2中性子は空間的に局在(dineutron相関)

cf. Migdal, Soviet J. of Nucl. Phys. 16 ('73) 238 Bertsch, Broglia, Riedel, NPA91('67)123

弱束縛核

- →連続状態のためにパリティ混合が起きやすい + 表面領域における対相関力の増大
- →dineutron 相関が増幅される
 - cf. Bertsch, Esbensen, Ann. of Phys. 209('91)327
 - M. Matsuo, K. Mizuyama, Y. Serizawa, PRC71('05)064326

放出2電子の 運動量分布 (Ar **イオンの**場合)

p₁ Th.Weber et al., Nature 405 ('00) 658

明らかな2電子相関 の効果 (ただし、基底状態におけ る相関より励起状態にお ける相関が主)

2中性子ハロー核のクーロン分解

外的刺激を与えて放出2粒子(2中性子)を観測する → クーロン分解

実験:

T. Nakamura et al., PRL96('06)252502

T. Aumann et al., PRC59('99)1252

三体模型計算:

K.H., H. Sagawa, T. Nakamura, S. Shimoura, PRC80('09)031301(R) cf. Y. Kikuchi et al., PRC87('13)034606 ← ⁹Li の構造

他にも²²C, ¹⁴Be, ¹⁹B など (T. Nakamura et al.)

<u>基底状態の相関? or 励起状態の相関?</u>

基底状態の相関のみ

 ✓終状態相互作用を切ると強度分布が高エネルギー側にシフト →低エネルギー領域では強度分布が小さくなる (ただし、和則があるので全強度は変化なし)
✓基底状態のdi-neutron相関を切ると E1 強度は小さくなる ← R_{c-2n} が小さくなるため (3.63 → 2.61 fm)
✓基底状態の相関と励起状態の相関の両方が重要

cf. T. Nakamura et al., PRL96('06)252502 C.A. Bertulani and M.S. Hussein, PRC76('07)051602

2.5

2

1.5

1

0

0

0.5

1.5

2

0.5

e2 (MeV)

<u>放出2中性子のエネルギー分布</u>

 ✓分布の仕方は nn 相関にあまり 依らない(ただし絶対値は変化)
✓V_{nC}の性質に大きく依存
✓¹¹Li でも⁶He でも同様

クーロン分解は2段階過程

基底状態: di-neutron 相関なし (odd-1のみ)の場合

2.5

 $v_{nn} = 0$

0.25

0.2

0.15

0.1

0.05

0

*4体CDCC計算?

nn 間の運動量分布を直接見る? : (p,d) 後方散乱

 ${}^{6}\text{He} + {}^{65}\text{Cu}$ (a) 2n transfer 1n transfer 10^{3} CRC(1n) dσ/dΩ (mb/sr) •• CRC (2n) 0 10^{0} Elastic scattering (b)no coupling 10^{0} n coupling 1n+2n coupling $\sigma_{el}/\sigma_{ruth}$ 10 10 30 55 35 50 60 40 45 65 $\theta_{cm}(deg)$

> A. Chatterjee et al., PRL101('08)032701

I. Tanihata et al., PRL100('08)192502

✓対相関に敏感
✓ di-neutron 相関との関係はこれからの課題
✓ 中間状態の束縛性の影響

Y. Kondo et al., PLB690('10)245

N. Kobayashi et al., PRC86('12)054604

より高い角運動量成分は見える か?			
li-neutron 相関 ↔ 高い l の混じり			
3体模 3 _{1/2}) ²	型計算 20.6 %		
$(p_{1/2})^2$	59.8 %	$(p_{3/2})^2$	2.2 %
$(d_{3/2})^2$	2.9 %	$(d_{5/2})^2$	12.6 %
$(f_{5/2})^2$	0.40 %	$(f_{7/2})^2$	0.92 %
$(g_{7/2})^2$	0.12 %	$(g_{9/2})^2$	0.18 %
$(h_{9/2})^2$	0.046 %	$(h_{11/2})^2$	0.056 %

SAMURAI での測定?

R.J. Charity, L.G. Sobotka, K.H., et al., PRC86('12)041307(R) cf. ⁶Be の2陽子崩壊: 大石知広 (26pHA5) <u>2中性子放出 (MoNA @ MSU)</u>

他にも

¹³Li (Z. Kohley et al., PRC87('13)011304(R)) ¹⁴Be \rightarrow ¹³Li \rightarrow ¹¹Li + 2n ²⁶O (E. Lunderbert et al., PRL108('12)142503) ²⁷F \rightarrow ²⁶O \rightarrow ²⁴O + 2n

nn 相関を取り入れた3体模型計算が喫緊の課題

di-neutron 相関:2中性子分布の空間的局在化

✓パリティ混合
✓中性子過剰核:連続状態への散乱
核表面での対相関の増大

どのようにプローブするか?

• **クーロン分**解 (T. Nakamura et al.)

✓相関によるB(E1)強度の増大
✓クラスター和則(基底状態の相関のみが関与)
✓2中性子間の開き角

- 核力分解
- •2中性子間の運動量分布
- •2中性子移行反応
- ノックアウト反応
- •2中性子放出崩壊

SAMURAIでの多重粒子測定実験に期待