Beyond the neutron-drip line ~ two-neutron decay of unbound nuclei ~

Kouichi Hagino Tohoku University, Sendai, Japan

Hiroyuki Sagawa *RIKEN/ University of Aizu*

Three-body model analysis for decay of ²⁶O Application to ¹⁰He Summary and future perspectives

Ito Int. Research Center Symp. "Perspectives of the Physics of Nuclear Structure" Nov. 1-4, 2017, U of Tokyo

Introduction

An important question in physics of unstable nuclei: where are the neutron- and proton- drip lines located?

Introduction

An important question in physics of unstable nuclei: where are the neutron- and proton- drip lines located?

Introduction

An important question in physics of unstable nuclei: where are the neutron- and proton- drip lines located?

My talk today: Decay dynamics of the unbound ²⁶O nucleus role of nn correlation? Experimental data for decay spectrum

Expt. : ${}^{27}F \rightarrow {}^{26}O \rightarrow {}^{24}O + n + n$

- > MSU: E. Lunderberg et al., PRL108 ('12) 142503
- **GSI**: C. Caesar et al., PRC88 ('13) 034313
- > RIKEN: Y. Kondo et al., PRL116('16)102503

$\underline{core + n + n \mod l}$ with density dependent contact *nn* interaction

G.F. Bertsch and H. Esbensen, Ann. of Phys. 209 ('91) 327 K.H. and H. Sagawa, PRC72 ('05) 044321

Density-dependent delta-force

$$v(r_1, r_2) = v_0(1 + \alpha \rho(r))$$
$$\times \delta(r_1 - r_2)$$

K.H. and H. Sagawa, PRC72 ('05) 044321

K.H. and H. Sagawa, PRC89 ('14) 014331

g.s. of ²⁷F (bound) $\underbrace{\Psi_{nn}(^{27}F) \otimes |^{25}F} \longrightarrow \underbrace{\Psi_{nn}(^{27}F) \otimes |^{24}O} \longrightarrow \begin{array}{c} \text{spontaneous} \\ \text{decay} \end{array}$ the same config. (the reference state) $\frac{dP}{dE} = |\langle \Psi_{nn}(^{27}F) | \Psi_{nn}(^{26}O;E) \rangle|^{2}$

K.H. and H. Sagawa, PRC89 ('14) 014331

$$\Psi_{nn}({}^{27}\mathsf{F}) \otimes |{}^{25}\mathsf{F}\rangle \longrightarrow \Psi_{nn}({}^{27}\mathsf{F}) \otimes |{}^{24}\mathsf{O}\rangle \longrightarrow \text{spontaneous} \\ \frac{dP}{dE} = |\langle \Psi_{nn}({}^{27}\mathsf{F})|\Psi_{nn}({}^{26}\mathsf{O};E)\rangle|^2$$

cf. Door-way state approach

K. Tsukiyama, T. Otsuka, and R. Fujimoto, PTEP 2015, 093D01

K.H. and H. Sagawa, PRC89 ('14) 014331

$$\Psi_{nn}({}^{27}\mathsf{F}) \otimes |{}^{25}\mathsf{F}\rangle \longrightarrow \Psi_{nn}({}^{27}\mathsf{F}) \otimes |{}^{24}\mathsf{O}\rangle \longrightarrow \text{spontaneous} \\ \frac{dP}{dE} = |\langle \Psi_{nn}({}^{27}\mathsf{F})|\Psi_{nn}({}^{26}\mathsf{O};E)\rangle|^2$$

Green's function method

$$\frac{dP}{dE} = \int dE' |\langle \Psi_{E'} | \Phi_{\text{ref}} \rangle|^2 \,\delta(E - E') = \frac{1}{\pi} \Im \langle \Phi_{\text{ref}} | \frac{1}{H - E - i\eta} | \Phi_{\text{ref}} \rangle$$

= G(E)

Correlated Green's function: continuum effects

$$G(E) = G_0(E) - G_0(E)v(1 + G_0(E)v)^{-1}G_0(E)$$

← zero-range interaction

Decay energy spectrum

Data: Y. Kondo et al., PRL116('16)102503

 $E_{\text{peak}} = 18 \text{ keV} (\text{input})$

Decay energy spectrum

$$|\Phi_{\rm ref}\rangle = \left| [1d_{3/2}]^2 \right\rangle \text{ in } {}^{27}\text{F}$$

K.H. and H. Sagawa, - PRC89 ('14) 014331 - PRC93('16)034330

a prominent second peak at $E = 1.28 + 0.11_{-0.08}$ MeV

Data: Y. Kondo et al., PRL116('16)102503

Decay energy spectrum

$$|\Phi_{\rm ref}\rangle = \left| [1d_{3/2}]^2 \right\rangle \text{ in } {}^{27}\text{F}$$

K.H. and H. Sagawa, - PRC89 ('14) 014331 - PRC93('16)034330

a prominent second peak at $E = 1.28 + 0.11_{-0.08}$ MeV

Data: Y. Kondo et al., PRL116('16)102503

a textbook example of pairing interaction!

Angular correlation of two emitted neutrons

 $P(\theta) \sim |\langle k_1 k_2 | \Psi_{\text{3bd}}(E) \rangle|^2$

K.H. and H. Sagawa, PRC89 ('14) 014331; PRC93 ('16) 034330

correlation → **enhancement of back-to-back emissions**

Di-neutron correlation

²⁶O in a large box

GSI Expt. : ${}^{11}\text{Li} \rightarrow {}^{10}\text{He} \rightarrow {}^{8}\text{He} + n + n \text{ (H.T. Johansson et al., NPA842 ('10)15)}$

cf. A.A. Korsheninnikov et al., PLB326 ('94) 31

H.T. Johansson et al., NPA847 ('10) 66

H.T. Johansson et al., NPA842 ('10) 15

Application to ¹⁰He decay

three-body model: ⁸He $[(s_{1/2})^2, (p_{3/2})^4] + n + n$ ref. state ¹¹Li (g.s.) K.H. and H. Sagawa, PRC72('05)

cf. H.T. Johansson et al., NPA842 ('10) 15 $a_{\rm s}$ (⁸He-n) = -3.17(66) fm $1/2^{-}$ (⁹He) : E=1.33 MeV, Γ =0.1 MeV

enhancement of back-to-back as in the decay of ²⁶O

Summary

 $\square 2n \text{ emission decay of } {}^{26}O \longleftarrow \text{three-body model}$

- ✓ Decay energy spectrum: strong low-energy peak
- ✓ 2^+ energy: excellent agreement with the data
- ✓ Angular distributions: enhanced back-to-back emission

→ dineutron correlation

 \square application to 2n decay of ¹⁰He

Future perspectives

Decay of unbound nuclei beyond the drip linesas a probe for di-neutron correlations inside nuclei

How to probe it?

- Coulomb breakup
 - ✓ disturbance due to E1 field
 - \checkmark cluster sum rule

(the mean value of θ_{nn})

- > pair transfer reactions
- two-proton decays
- <u>two-neutron decays</u>

spontaneous emission without a disturbance

Future perspectives

2n decay of unbound nuclei

B. Blank and M. Ploszajczak, Rep. Prog. Phys. 71('08)046301

Can correlations be probed?

2p emission: long range Coulomb
2n emission: only centrifugal

back-to-back emission

Experimental challenges

- ✓ measurement of ang. corr.
- ✓ spin measurement

Theoretical challenges

- ✓ core deformation (¹⁶Be)
- ✓ 3-body to 5- and 7-body

 $core+4n (^{13}Li)$ $core+6n (^{10}He)$

✓ 4n emission (²⁸O)