

K.H. and H. Sagawa, PRC89 ('14) 014331, PRC90 ('14) 027303, PRC93 ('16) 034330

ダイニュートロン相関: どういうものか?
 非束縛核²⁶0 の2中性子崩壊
 まとめ

この図は正しいのか?

はじめに:中性子過剰核

次世代RIビーム施設:例えば RIBF (RIKEN, Japan) FRIB (MSU, USA)

ed. by E.M. Henley and S.D. Ellis (2013) *"Exotic nuclei far from the stability line"* K.H., I. Tanihata, and H. Sagawa

●ハロー/スキン構造
●ボロミアン原子核
●E1遷移確率の増大

●ダイニュートロン相関
●殻進化
●など

ボロミアン核:ユニークな3体系

残留相互作用 → 引力

12 10 ~ 110 13 14/ 15 ¹⁴B °B ^{12}R ¹³В 'nВ ''В ¹⁰Be ¹¹Be ¹²Be °Be 'Be 7<u>L</u>i ⁸Li 9 ٩i 111 'He ⁴He °He не TIC ЗΗ Ή ²Н "ボロミアン核" ⁴n

 ${}^{11}\text{Li} = {}^{9}\text{Li} + n + n$ ${}^{6}\text{He} = {}^{4}\text{He} + n + n$

<u>ボロミアン核の構造</u>

 ・外殻中性子の空間的構造 はどういうものか?
 ・このような図はどの程度 正しいのか? –

ボロミアン原子核とダイニュートロン相関

Ann. of Phys., 209('91)327

✓ A.B. Migdal ('73)
✓ P.G. Hansen and B. Jonson ('87)

<u>重い中性子過剰核の dineutron 相関</u>

M. Matsuo, K. Mizuyama, and Y. Serizawa, PRC71('05)064326 Skyrme HFB

N. Pillet, N. Sandulescu, and P. Schuck, PRC76('07)024310 Gogny HFB Dineutron 相関とはどういうものか? 相関: $\langle AB \rangle \neq \langle A \rangle \langle B \rangle$ 例)¹⁸O = ¹⁶O + n + n cf. ¹⁶O + n : 3つの束縛状態(1d_{5/2}, 2s_{1/2}, 1d_{3/2}) i) 2中性子相関がない場合 $|nn\rangle = |(1d_{5/2})^2\rangle$ 中性子1を z_1 に置いたときの中性子2の分布:

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 z (fm) z (fm) z (fm) z (fm)

✓2つの粒子が独立に運動 ✓中性子1がどこにいても中性子2の分布は影響されない

 $\langle AB \rangle = \langle A \rangle \langle B \rangle$

Dineutron 相関とはどういうものか?相関: $\langle AB \rangle \neq \langle A \rangle \langle B \rangle$ 例) $^{18}O = ^{16}O + n + n$ cf. $^{16}O + n : 3$ つの束縛状態 ($1d_{5/2}, 2s_{1/2}, 1d_{3/2}$)ii) 2中性子相関が同パリティ状態 (束縛状態)にのみ働く場合 $|nn\rangle = \alpha |(1d_{5/2})^2 \rangle + \beta |(2s_{1/2})^2 \rangle + \gamma |(1d_{3/2})^2 \rangle$

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 z (fm) z (fm) z (fm) z (fm)

✓中性子1とともに中性子2の分布が変化(2中性子相関)
 ✓ただし、中性子2は z₁ と -z₁の両方にピーク
 → このようなものは di-neutron 相関とは言わない

Dineutron 相関とはどういうものか?相関: $\langle AB \rangle \neq \langle A \rangle \langle B \rangle$ 例) ${}^{18}O = {}^{16}O + n + n$ cf. ${}^{16}O + n : 3$ つの束縛状態 ($1d_{5/2}, 2s_{1/2}, 1d_{3/2}$)iii) 2中性子相関が連続状態にも働く場合
 $z_1 = 1 \text{ fm}$ $z_1 = 2 \text{ fm}$ $z_1 = 3 \text{ fm}$ $z_1 = 4 \text{ fm}$

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 z (fm) z (fm) z (fm) z (fm)

✓空間的な相関:中性子2の密度は中性子1側にかたよる
 ✓パリティ混合が本質的な役割
 ✓(dineutron 相関)

cf. F. Catara, A. Insolia, E. Maglione, and A. Vitturi, PRC29('84)1091

-6-4-20246-6-4-20246-6-4-20246 ii) 正十負パリティ(束縛十連続状態)

dineutron 相関は異なるパリティ状態の混合によって生じる

F. Catara, A. Insolia, E. Maglione, and A. Vitturi, PRC29('84)1091

-6 -4 -2 0 2 4 6

-6 -4 -2 0 2 4 6 z (fm)

2中性子は空間的に局在(dineutron相関)

cf. Migdal, Soviet J. of Nucl. Phys. 16 ('73) 238 Bertsch, Broglia, Riedel, NPA91('67)123

弱束縛核

- →連続状態のためにパリティ混合が起きやすい
 + 表面領域における対相関力の増大
 →dineutron 相関が増幅される
 - cf. Bertsch, Esbensen, Ann. of Phys. 209('91)327
 - M. Matsuo, K. Mizuyama, Y. Serizawa, PRC71('05)064326

<u>運動量空間でのダイ・ニュートロン相関</u>

$$\Psi(r,r') = \alpha \Psi_{s^2}(r,r') + \beta \Psi_{p^2}(r,r') \longrightarrow \theta_r = 0:$$

$$\tilde{\Psi}(k,k') = \alpha \,\tilde{\Psi}_{s^2}(k,k') - \beta \,\tilde{\Psi}_{p^2}(k,k') \longrightarrow \theta_k = \pi : \, \text{if} \, \mathsf{t}$$

座標空間での2粒子密度:

 $8\pi^2 r^4 \sin\theta \cdot \rho(r,r,\theta)$

運動量空間での2粒子密度:

 $8\pi^2 k^4 \sin\theta \cdot \rho(k,k,\theta)$

2粒子放出崩壊への帰結

⁶Be の2陽子放出崩壊:時間依存アプローチ

大石知広君の計算

<u>T. Oishi</u>, K.H., H. Sagawa, PRC90 ('14) 034303

中性子過剰核におけるダイニュートロン相関

中性子過剰核の基底状態に 強いダイニュートロン相関

▶ クーロン分解 T. Nakamura et al. クラスター和則 (θ_mの平均値)

- ✓ ボロミアン核(3体計算)
 Bertsch-Esbensen ('91)
 Zhukov et al. ('93)
 Hagino-Sagawa ('05)
 Kikuchi-Kato-Myo ('10)
- ✓ 重い核 (HFB計算) Matsuo et al. ('05) Pillet-Sandulescu-Schuck ('07)

外的刺激を与えて放出2粒子(2中性子)を観測する → クーロン分解

実験:

T. Nakamura et al., PRL96('06)252502

T. Aumann et al., PRC59('99)1252

三体模型計算:

K.H., H. Sagawa, T. Nakamura, S. Shimoura, PRC80('09)031301(R) cf. Y. Kikuchi et al., PRC87('13)034606 ← ⁹Li の構造

他にも²²C, ¹⁴Be, ¹⁹B など (T. Nakamura et al.)

cf. T. Nakamura et al., PRL96('06)252502 C.A. Bertulani and M.S. Hussein, PRC76('07)051602

中性子過剰核におけるダイニュートロン相関

中性子過剰核の基底状態に 強いダイニュートロン相関

- ✓ ボロミアン核(3体計算)
 Bertsch-Esbensen ('91)
 Zhukov et al. ('93)
 Hagino-Sagawa ('05)
 Kikuchi-Kato-Myo ('10)
- ✓ 重い核 (HFB計算) Matsuo et al. ('05) Pillet-Sandulescu-Schuck ('07)

どのようにプローブするか?

> クーロン分解

 T. Nakamura et al.
 クラスター和則
 (θ_mの平均値)

 > 対移行反応
 > 2陽子放出崩壊

 クーロン3体問題

▶ 2中性子放出崩壊 遠心力障壁による 3体共鳴 MoNA (¹⁶Be, ¹³Li, ²⁶O) SAMURAI (²⁶O) GSI (²⁶O)

中性子ドリップ線を超えた非束縛核の2中性子放出崩壊

PRL 116, 102503 (2016)

PHYSICAL REVIEW LETTERS

week ending 11 MARCH 2016

Nucleus ²⁶O: A Barely Unbound System beyond the Drip Line

Y. Kondo,¹ T. Nakamura,¹ R. Tanaka,¹ R. Minakata,¹ S. Ogoshi,¹ N. A. Orr,² N. L. Achouri,² T. Aumann,^{3,4} H. Baba,⁵ F. Delaunay,² P. Doornenbal,⁵ N. Fukuda,⁵ J. Gibelin,² J. W. Hwang,⁶ N. Inabe,⁵ T. Isobe,⁵ D. Kameda,⁵ D. Kanno,¹ S. Kim,⁶ N. Kobayashi,¹ T. Kobayashi,⁷ T. Kubo,⁵ S. Leblond,² J. Lee,⁵ F. M. Marqués,² T. Motobayashi,⁵ D. Murai,⁸ T. Murakami,⁹ K. Muto,⁷ T. Nakashima,¹ N. Nakatsuka,⁹ A. Navin,¹⁰ S. Nishi,¹ H. Otsu,⁵ H. Sato,⁵ Y. Satou,⁶ Y. Shimizu,⁵ H. Suzuki,⁵ K. Takahashi,⁷ H. Takeda,⁵ S. Takeuchi,⁵ Y. Togano,^{4,1} A. G. Tuff,¹¹ M. Vandebrouck,¹² and K. Yoneda⁵

$$E = +770^{+20}_{-10} \text{ keV}$$

 $\Gamma = 172(30) \text{ keV}$

$$\square >$$

E = +749(10) keV $\Gamma = 88(6) \text{ keV}$ 26O核の2中性子放出崩壊

➢ MSU で測られた¹⁶Be, ¹³Li, ²⁶O の中で一番単純 ¹⁶Be: 変形, ¹³Li: 芯核¹¹Li の取り扱い

E. Lunderberg et al., PRL108 ('12) 142503Z. Kohley et al., PRL 110 ('13)152501

▶ 酸素同位体の中性子ドリップ線に対する異常性

ボロミアン原子核に対する3体模型計算

<u>密度に依存するゼロ・レンジ相互作用</u>

H. Esbensen, G.F. Bertsch, K. Hencken, Phys. Rev. C56('99)3054

$$V_{nn}(r_{1}, r_{2}) = \delta(r_{1} - r_{2}) \left(v_{0} + \frac{v_{\rho}}{1 + \exp[(r_{1} - R_{\rho})/a_{\rho}]} \right)$$

> 真空中の2中性子系:

$$V_{nn}$$

$$V_{nn}^{(0)}(r_{1}, r_{2}) = v_{0} \delta(r_{1} - r_{2})$$

$$a_{nn} = \frac{\pi}{2} \cdot \frac{\alpha}{1 + \alpha k_{c}}$$

$$\alpha = \frac{v_{0}}{2\pi^{2}} \frac{m}{\hbar^{2}}, \quad E_{cut} = \frac{\hbar^{2}k_{c}^{2}}{m}$$

$$v_{0} = \frac{2\pi^{2}\hbar^{2}}{m} \cdot \frac{2a_{nn}}{\pi - 2k_{c}a_{nn}}$$

▶原子核中での2中性子系:
v_ρ, R_ρ, a_ρ : S_{2n}を再現するように調整

2粒子波動関数 (J=0 対)

$$\hat{h} \psi_{nljm}(\boldsymbol{r}) = \epsilon_{nlj} \psi_{nljm}(\boldsymbol{r})$$
 V_{WS}
 V_{WS}
 $\psi^{(2)}_{nn'lj}(\boldsymbol{r}, \boldsymbol{r}')$
 $= \sum_{m} \langle jmj - m|00 \rangle \psi_{nljm}(\boldsymbol{r}) \psi_{n'lj-m}(\boldsymbol{r}')$

ハミルトニアンの対角化

$$\Psi_{gs}(\mathbf{r},\mathbf{r}') = \mathcal{A} \sum_{nn'lj} \alpha_{nn'lj} \Psi_{nn'lj}^{(2)}(\mathbf{r},\mathbf{r}')$$

●連続状態:離散化 ●エネルギー切断: $\epsilon_{nlj} + \epsilon_{n'lj} \le \frac{A_c + 1}{A_c} E_{cut}$

e, (MeV)

H. Esbensen and G.F. Bertsch, NPA542('92)310

²⁶Oの2中性子放出崩壊への拡張

K.H. and H. Sagawa, PRC89 ('14) 014331

cf. Expt. : ${}^{27}F(201 \text{ MeV/u}) + {}^{9}Be \rightarrow {}^{26}O \rightarrow {}^{24}O + n + n$

g.s. of ²⁷F (bound) $\Psi_{nn} \otimes |^{25}F\rangle$ $\Psi_{nn} \otimes |^{24}O\rangle$ 自発的な崩壊 同じ配位(初期波束)

FSI → グリーン関数法 ← 連続状態

²⁵O:n-²⁴O ポテンシャルのキャリブレーション

ガモフ状態(外向き波境界条件)

d_{3/2}: E = 0.749 MeV (input), $\Gamma = 87.2$ keV cf. $\Gamma_{exp} = 86$ (6) keV

f_{7/2}: E = 2.44 MeV, $\Gamma = 0.21$ MeV p_{3/2}: E = 0.577 MeV, $\Gamma = 1.63$ MeV

n-²⁴O 崩壊スペクトルに対する別の手法

→ この方法を²⁴O+n+n に応用する

$$\frac{dP}{dE} = \int dE' |\langle \Psi_{E'} | \Phi_{\text{ref}} \rangle|^2 \,\delta(E - E') = \frac{1}{\pi} \Im \langle \Phi_{\text{ref}} | \frac{1}{H - E - i\eta} | \Phi_{\text{ref}} \rangle$$

相関のあるグリーン関数:

$$G(E) = G_0(E) - G_0(E)v(1 + G_0(E)v)^{-1}G_0(E)$$

← 連続状態の効果

無相関グリーン関数

$$G_{0}(E) = \sum_{j_{1}, l_{1}} \sum_{j_{2}, l_{2}} \int de_{1} de_{2} \frac{|\psi_{1}\psi_{2}\rangle\langle\psi_{1}\psi_{2}|}{e_{1} + e_{2} - E - (i\eta)} - \text{small, finite } \eta$$

 $E_{\text{peak}} = 18 \text{ keV} \text{ (input)}$

Reference (initial) state: $(d_{3/2})^2$ in ${}^{27}F$

<u>ボックス近似による2粒子密度</u>

total

 $\mathbf{S} = \mathbf{0}$

S = 1

150

180

26

<u>励起 0+ 状態</u>

cf. Grigorenko et al. (PRC91 ('15) 064617)

 $E = 0.01 \text{ MeV} [(d_{3/2})^2 : 79 \%]$ $E = 1.7 \text{ MeV} [(d_{3/2})^2 : 80 \%]$ $E = 2.6 \text{ MeV} [(d_{3/2})^2 : 86 \%]$ cf. 一粒子共鳴状態 (MeV) d_{3/2}: E = 0.75, $\Gamma = 0.087$ f_{7/2}: E = 2.44, $\Gamma = 0.21$ p_{3/2}: E = 0.58, $\Gamma = 1.63$

新しい理研のデータ: $E = 1.28 + 0.11_{-0.08}$ MeVに明確なピーク 6 $^{27}F+C\rightarrow^{26}O\rightarrow^{24}O+2n$ (b) N=18 Excitation Energy (MeV) ----- $^{26}O(0^+)$ 50 ²⁶O_{1st} ----- ²⁶0(2⁺) Counts /50keV New! sum **USDB** 2 6 n 8 $E_{decay}(^{24}O+n+n)$ 0 8 10 12 14 16 18 Y. Kondo et al., Atomic number Z PRL116('16)102503 cf. カイラル NN+3Nカを用いた第一原理計算: E₂₊=1.6 MeV (C. Caesar et al., PRC88('13)034313)

連続状態殼模型: E₂₊=1.8 MeV

(A. Volya and V. Zelvinsky, PRC74 ('14) 064314)

理研のデータ: E ~ 1.28^{+0.11}-0.08 MeVに 」 明確なピーク

(MeV) 1.498 $(d_{3/2})^2$ 1.282 $\Gamma = 0.12 \text{ MeV}$

K.H. and H. Sagawa, PRC90('14)027303; PRC, 93('16) 034330.

3N **力の**役割?

PRL 111 (2013) 042501 でも同様の結論

主な寄与: 3体波動関数のうち s波及び p波の成分 (遠心力障壁の影響がゼロまたは小さい)

*高いlの成分: 遠心カポテンシャルのために大きく抑制 (E_{decay}~18 keV, e₁~e₂~9 keV)

<u>放出2中性子の角度相関</u>

MONAにおける最近の測定及びシミュレーション

Y system

Z. Kohley et al., PRC91 ('15) 034323

²⁶Oの2中性子放出崩壊 ← 密度依存ゼロ・レンジ相互作用を用いた 3体模型計算

(連続状態の効果を取り扱いやすい)

- ✓ 崩壊スペクトル: 低エネルギーにするどいピーク
- ✓ 2⁺のエネルギー:実験データをきれいに再現
- ✓ 角度相関: 逆向き方向の放出の増大

→ ダイニュートロン相関

✓¹⁶Be 及び ¹³Li の解析 ✓崩壊幅?

✓ ²⁸Oの4中性子放出崩壊への拡張