Di-neutron 相関と 中性子ドリップ線を越えた原子核の 2中性子放出崩壊

- 1. Di-neutron 相関とは? 2. **クーロン分**解
- 3. *他のプローブ*
- 4. 三体模型による²⁶0 核の2中性子放出崩壊 5. まとめ

Di-neutron 相関とは? 相関: $\langle AB \rangle \neq \langle A \rangle \langle B \rangle$ 例)¹⁸O = ¹⁶O + n + n cf. ¹⁶O + n : 3つの束縛状態(1d_{5/2}, 2s_{1/2}, 1d_{3/2}) i) 2中性子相関がない場合 $|nn\rangle = |(1d_{5/2})^2\rangle$ 中性子1を z_1 に置いたときの中性子2の分布:

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 z (fm) z (fm) z (fm) z (fm)

✓2つの粒子が独立に運動 ✓中性子1がどこにいても中性子2の分布は影響されない

 $\langle AB \rangle = \langle A \rangle \langle B \rangle$

Di-neutron 相関とは? 相関: $\langle AB \rangle \neq \langle A \rangle \langle B \rangle$ 例)¹⁸O = ¹⁶O + n + n cf. ¹⁶O + n : 3つの束縛状態($1d_{5/2}, 2s_{1/2}, 1d_{3/2}$) ii) 2中性子相関が同パリティ状態(束縛状態)にのみ働く場合 $|nn\rangle = \alpha |(1d_{5/2})^2\rangle + \beta |(2s_{1/2})^2\rangle + \gamma |(1d_{3/2})^2\rangle$ $z_1 = 1 \text{ fm}$ $z_1 = 2 \text{ fm}$ $z_1 = 3 \text{ fm}$ $z_1 = 4 \text{ fm}$

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 z (fm) z (fm) z (fm) z (fm)

✓中性子1とともに中性子2の分布が変化(2中性子相関)
 ✓ただし、中性子2は z₁ と -z₁の両方にピーク
 → このようなものは di-neutron 相関とは言わない

cf. F. Catara, A. Insolia, E. Maglione, and A. Vitturi, PRC29('84)1091

dineutron 相関は異なるパリティ状態の混合によって生じる

F. Catara, A. Insolia, E. Maglione, and A. Vitturi, PRC29('84)1091

2中性子は空間的に局在(dineutron相関)

cf. Migdal, Soviet J. of Nucl. Phys. 16 ('73) 238 Bertsch, Broglia, Riedel, NPA91('67)123

弱束縛核

→連続状態のためにパリティ混合が起きやすい + 表面領域における対相関力の増大

0

(fm)

-6

-4

-2

Z

6

4

2

<u>弱束縛核における連続状態の役割</u>

無限核物質におけるペアリング・ギャップ

M. Matsuo, PRC73('06)044309

-6 -4 -2 0 2 4 6

-6 -4 -2 0 2 4 6 z (fm)

2中性子は空間的に局在(dineutron相関)

cf. Migdal, Soviet J. of Nucl. Phys. 16 ('73) 238 Bertsch, Broglia, Riedel, NPA91('67)123

弱束縛核

- →連続状態のためにパリティ混合が起きやすい
 + 表面領域における対相関力の増大
 →dineutron 相関が増幅される
 - cf. Bertsch, Esbensen, Ann. of Phys. 209('91)327
 - M. Matsuo, K. Mizuyama, Y. Serizawa, PRC71('05)064326

Borromean 核の dineutron 相関

G.F. Bertsch, H. Esbensen, Ann. of Phys., 209('91)327

 $x^2 y^2 \rho_2(x, y)$ for ⁶He

FIG. 1. Spatial correlation density plot for the 0^+ ground state of ⁶He. Two components—di-neutron and cigarlike—are shown schematically.

Yu.Ts. Oganessian, V.I. Zagrebaev, and J.S. Vaagen, *PRL82('99)4996*M.V. Zhukov et al., *Phys. Rep. 231('93)151*

"di-neutron" and *"cigar-like"* configurations

<u>重い中性子過剰核の dineutron 相関</u>

M. Matsuo, K. Mizuyama, and Y. Serizawa, PRC71('05)064326 Skyrme HFB

N. Pillet, N. Sandulescu, and P. Schuck, PRC76('07)024310 Gogny HFB

放出2電子の 運動量分布 (Ar **イオンの**場合)

p₁ Th.Weber et al., Nature 405 ('00) 658

明らかな2電子相関 の効果 (ただし、基底状態におけ る相関より励起状態にお ける相関が主)

2中性子ハロー核のクーロン分解

外的刺激を与えて放出2粒子(2中性子)を観測する → クーロン分解

実験:

T. Nakamura et al., PRL96('06)252502

T. Aumann et al., PRC59('99)1252

三体模型計算:

K.H., H. Sagawa, T. Nakamura, S. Shimoura, PRC80('09)031301(R) cf. Y. Kikuchi et al., PRC87('13)034606 ← 芯核 (⁹Li) の構造

他にも²²C, ¹⁴Be, ¹⁹B など (T. Nakamura et al.)

<u>ボロミアン核に対する3体模型計算</u>

e, (MeV)

H. Esbensen and G.F. Bertsch, NPA542('92)310

<u>基底状態の相関? or 励起状態の相関?</u>

基底状態の相関のみ

 ✓終状態相互作用を切ると強度分布が高エネルギー側にシフト →低エネルギー領域では強度分布が小さくなる (ただし、和則があるので全強度は変化なし)
 ✓基底状態のdi-neutron相関を切ると E1 強度は小さくなる ← R_{c-2n} が小さくなるため (3.63 → 2.61 fm)
 ✓基底状態の相関と励起状態の相関の両方が重要

cf. T. Nakamura et al., PRL96('06)252502 C.A. Bertulani and M.S. Hussein, PRC76('07)051602

<u>放出2中性子のエネルギー分布</u>

 ✓分布の仕方は nn 相関にあまり 依らない(ただし絶対値は変化)
 ✓V_{nC}の性質に大きく依存
 ✓¹¹Li でも⁶He でも同様

K.H., H. Sagawa, T. Nakamura, S. Shimoura, PRC80('09)031301(R)

K.H., H. Sagawa, T. Nakamura, S. Shimoura, PRC80('09)031301(R)

2.5

2

1.5

1

0

0

0.5

1.5

2

0.5

e2 (MeV)

<u>放出2中性子のエネルギー分布</u>

 ✓分布の仕方は nn 相関にあまり 依らない(ただし絶対値は変化)
 ✓V_{nC}の性質に大きく依存
 ✓¹¹Li でも⁶He でも同様

クーロン分解は2段階過程

基底状態: di-neutron 相関なし (odd-1のみ)の場合

2.5

 $v_{nn} = 0$

0.25

0.2

0.15

0.1

0.05

0

*4体CDCC計算?

 ${}^{6}\text{He} + {}^{65}\text{Cu}$ (a) 2n transfer 1n transfer 10^{3} CRC(1n) dσ/dΩ (mb/sr) •• CRC (2n) 0 10^{0} Elastic scattering (b)no coupling 10^{0} n coupling 1n+2n coupling $\sigma_{el}/\sigma_{ruth}$ 10 10 30 55 35 50 60 40 45 65 $\theta_{cm}(deg)$

> A. Chatterjee et al., PRL101('08)032701

I. Tanihata et al., PRL100('08)192502

✓対相関に敏感
 ✓ di-neutron 相関との関係はこれからの課題
 ✓ 中間状態の束縛性の影響

中性子過剰核を用いた対移行反応

中性子過剰核を用いると、 中間状態(の多く)が非束縛 反応機構はどう変わる? これからの課題

Y. Kondo et al., PLB690('10)245

N. Kobayashi et al., PRC86('12)054604

り高い角運動量成分は見える ?			
neutron 相関 ↔ 高い l の混じり			
▶模 ₂) ²	型計算 20.6 %		
$(2)^{2}$	59.8 %	$(p_{3/2})^2$	2.2 %
$(2)^2$	2.9 %	$(d_{5/2})^2$	12.6 %
$^{2})^{2}$	0.40 %	$(f_{7/2})^2$	0.92 %
$(2)^2$	0.12 %	$(g_{9/2})^2$	0.18 %
$(2)^2$	0.046 %	$(h_{11/2})^2$	0.056 %

B. Blank and M. Ploszajczak, Rep. Prog. Phys. 71('08)046301

✓ 放出2陽子のエネルギー分布や角度分布から相関が見えるか?
 ✓ クーロン3体系(終状態相互作用)

- ・理論的取扱いが難しい
- ・基底状態の相関をどのくらい乱すか

M. Pfutzner, M. Karny, L.V. Grigorenko, K. Riisager, Rev. Mod. Phys. 84 ('12) 567

M. Pfutzner, M. Karny, L.V. Grigorenko, K. Riisager, Rev. Mod. Phys. 84 ('12) 567

→ ただし、他の核では diproton 相関がきれいに見えている例は少 ない(理論計算の例があまりない) 大石知広君(東北大D3) ⁶Be 核を解析中

- ・時間に依存する3体模型
- ・崩壊幅
- 放出2陽子の相関
 はこれから

他にも

¹³Li (Z. Kohley et al., PRC87('13)011304(R)) ¹⁴Be \rightarrow ¹³Li \rightarrow ¹¹Li + 2n ²⁶O (E. Lunderbert et al., PRL108('12)142503) ²⁷F \rightarrow ²⁶O \rightarrow ²⁴O + 2n

nn 相関を取り入れた3体模型計算が喫緊の課題

²⁶O 核の2中性子放出崩壊の解析

K.H., preliminary

▶ ¹⁶Be, ¹³Li, ²⁶O (MSU) の中では最も理論的に簡単 ¹⁶Be: 変形、¹³Li: 芯核 ¹¹Li の取扱い

▶ 中性子過剰なOとF

➢ SAMURAIを用いた新しい実験(^{25,26}O のdecay spectroscopy)

近藤洋介氏(東エ大)データ解析中 MSUの50倍の統計量

近藤さんのスライドより (物理学会2013年春) <u>260に関するMSUのデータ</u>

E. Lunderberg et al., PRL108 ('12) 142503Z. Kohley et al., PRL 110 ('13)152501

 27 F (82 MeV/u) + 9 Be $\rightarrow ^{26}$ O $\rightarrow ^{24}$ O + n + n

 $E_{decay} = 150 + 50_{-150} \text{ keV}$

*統計が不十分なため、放出2中性子の角度相関、エネルギー相関の の測定はまだ → SAMURAI を使えばできる?

e₁ (MeV)

H. Esbensen and G.F. Bertsch, NPA542('92)310

$$M_{fi} = \langle (j_1 j_2)^{J=0} | (1 + v G_0)^{-1} | \Psi_i \rangle$$

始状態:3体模型 (²⁵F + n + n)

→ sudden proton removal (nnの配位は²⁵F+n+nの計算のまま core だけが²⁵F から²⁴Oに突然変化)

終状態 ψ_f : 3体模型 (²⁴O + n + n)

▶²⁴O + n ポテンシャル

e_{2s1/2} = -4.09 (13) MeV, $e_{1d3/2} = +770^{+20}_{-10}$ keV, $\Gamma_{1d3/2} = 172(30)$ keV を再現するような Woods-Saxon ポテンシャル a = 0.95 fm $\rightarrow \Gamma_{1d3/2} = 141.7$ keV

▶ $\frac{2^{5}F + n ポテンシャル}{(^{24}O + n) ポテンシャル + \delta V_{ls}}^{\epsilon}$

_ pn テンソルカ

T. Otsuka et al., PRL95('05)232502

 $e_{1d3/2}$ (²⁶F) = -0.811 MeV

<u>i) 崩壊エネルギー・スペクトル</u>

幅の狭い (Γ_{exp} ~ 10⁻¹⁰ MeV) 三体共鳴状態

<u>ii) 放出中性子のエネルギー・スペクトル</u>

correlated uncorrelated 0.5 18000 45 1 16000 40 0.4 0.8 14000 35 e₂ (MeV) 12000 30 (MeV) 0.3 0.6 10000 25 8000 20 0.2 0.4 6000 e2 15 4000 0.1 10 0.2 2000 5 0 0 0 0 0.2 0.3 0.4 0.5 0 0.1 0.2 0.4 0.6 0.8 1 0 e₁ (MeV) e₁ (MeV)

<u>ii) 放出中性子のエネルギー・スペクトル</u>

<u>iii) 放出中性子の角度分布</u>

(*correlated はピーク・エネルギーで評価して規格化したもの)

cf. Grigorenko たちの計算: 我々とコンシステント

L.V. Grigorenko et al., arXiv:1304.4901

di-neutron 相関:2中性子分布の空間的局在化

✓パリティ混合
 ✓中性子過剰核:連続状態への散乱
 核表面での対相関の増大

どのようにプローブするか?

• **クーロン分解** (T. Nakamura et al.)

✓相関によるB(E1)強度の増大
 ✓クラスター和則(基底状態の相関のみが関与)
 ✓2中性子間の開き角

•2中性子放出崩壊

- ✓ 崩壊エネルギー・スペクトル
- ✓ 放出中性子のエネルギー・スペクトル
- ✓ 放出中性子の角度分布

SAMURAIでの多重粒子測定実験に期待 (エネルギー分布、角度分布の測定)