Nuclear matrix elements for neutrinoless double beta decay: multi-reference covariant DFT

J. M. Yao (尧江明)

School of Physical Science and Technology, Southwest University, 400715
Chongqing, China

Department of Physics, Tohoku University, Sendai 980-8578, Japan

in collaboration with L. S. Song, K. Hagino, J. Meng, and P. Ring
Outline

1 Introduction: status of studying $0\nu\beta\beta$ decay

2 Framework: multi-reference covariant density functional theory

3 Results and discussions
 - Structural properties of $0\nu\beta\beta$ decay candidate nuclei
 - Nuclear matrix elements for $0\nu\beta\beta$ decay

4 Summary and outlook
Outline

1. Introduction: status of studying $0\nu\beta\beta$ decay

3. Results and discussions
 - Structural properties of $0\nu\beta\beta$ decay candidate nuclei
 - Nuclear matrix elements for $0\nu\beta\beta$ decay

4. Summary and outlook
Neutrinoless double beta decay

- Neutrinoless double beta decay $(0\nu\beta\beta)$:
 \[A^Z X \rightarrow A^{Z+2} Y + 2e^- \]
 \[(1) \]
 \(\rightarrow \) one of the current main goals in nuclear and particle physics.

- The half-life of $0\nu\beta\beta$-decay (mechanism of exchange light Majorana neutrinos):
 \[\left[T_{1/2}^{0\nu} \right]^{-1} = G_{0\nu} g_A^4 \left| \langle m_{\beta\beta} \rangle / m_e \right|^2 \left| M^{0\nu} (0^+_I \rightarrow 0^+_F) \right|^2, \]
 \[(2) \]
 g_A: axial coupl. constant; m_e: electron mass.
 - phase space factor $G_{0\nu}$ depending on both $Q_{\beta\beta}$ and $Z \leftarrow$ atomic physics
 - nuclear matrix element (NME) $M^{0\nu}$: \leftarrow nuclear physics
 - effective neutrino mass $\langle m_{\beta\beta} \rangle$: \leftarrow particle physics
 \(\rightarrow \) providing the direction information on effective neutrino mass $\langle m_{\beta\beta} \rangle$.

Neutrinoless double beta decay
\(0\nu\beta\beta\)-decay: a key to solve the problem of mass hierarchy

- The measurements of neutrino oscillations (\(\nu_{\ell 1} \leftrightarrow \nu_{\ell 2}\)): providing the differences between the squares of the masses (\(\Delta m^2_{ij}\)) among three neutrino species (but not for the masses themselves).

\[
(m^2_1, m^2_2, m^2_3) = \frac{m^2_1 + m^2_2}{2} + \left\{ \begin{array}{c}
-(\delta m^2)_\text{sol}/2, \\
+(\delta m^2)_\text{sol}/2, \\
\pm(\Delta m^2)_\text{atm},
\end{array} \right.
\]

(3)

Differences between the squares of the masses:

\((\delta m^2)_\text{sol} = 7.59^{+0.20}_{-0.18} \times 10^{-5} \text{ eV}^2\),
\((\Delta m^2)_\text{atm} = 2.40^{+0.08}_{-0.09} \times 10^{-3} \text{ eV}^2\).

Remaining problem of mass hierarchy:

- Normal mass hierarchy (NH) (+):
 \(m_1 < m_2 \ll m_3, \langle m_{\beta\beta} \rangle \sim 5 \text{ meV}\)

- Inverted mass hierarchy (IH) (−):
 \(m_3 \ll m_1 < m_2, \langle m_{\beta\beta} \rangle \sim 20 - 50 \text{ meV}\)

Measurements of $0\nu\beta\beta$ decay

Heidelberg-Moscow claim (76Ge)

$$T_{1/2}^{0\nu} = 2.23^{+0.44}_{-0.31} \times 10^{25} \text{ yr} \Rightarrow \langle m_{\beta\beta} \rangle \sim 0.32 \text{ eV}$$

In confliction with:

1. total mass of neutrinos from the cosmology observations
2. latest measurements on the the $0\nu\beta\beta$ decay

Cosmology constraint

Neutrino contribution to the mass density of the Universe Ω_ν:

$$\Omega_\nu h^2 = \sum_{i=1}^{3} m_i/(92.5 \text{ eV}). \Rightarrow \sum_{i=1}^{3} m_i < 0.58 \text{ eV (95% C.L.)}$$

Latest data about $T_{1/2}^{0\nu}$ with 90% C.L.

136Xe ($> 1.6 \times 10^{25}$ yr): M. Auger et al. (EXO Coll.), PRL109, 032505 (2012).

136Xe ($> 3.4 \times 10^{25}$ yr): A. Gando et al. (KamLAND-Zen Coll.), PRL110, 062502 (2013).

76Ge ($> 3.0 \times 10^{25}$ yr): M. Agostini et al. (GERDA Coll.), PRL111, 122503 (2013).
Status of computing the NMEs for $0\nu\beta\beta$ decay

- Great effort has been made to calculate the NME.
- Two key ingredients for computing the NME $M^{0\nu} = \langle 0^+_F | \hat{O}^{0\nu} | 0^+_I \rangle$.

1. Transition operator: Non-relativistic reduced transition operator is often used

$$\hat{O}^{0\nu} = [\hat{O}^{0\nu}_{GT} \sigma_1 \cdot \sigma_2 - (\frac{g_V}{g_A})^2 \hat{O}^{0\nu}_F + \hat{O}^{0\nu}_T S_{12}] \tau_1^- \tau_2^-, \quad \tau^- | n \rangle = | p \rangle$$

with $S_{12} = 3(\sigma_1 \cdot q_1)(\sigma_2 \cdot q_2) - \sigma_1 \cdot \sigma_2$.

- Correlation effects (for light neutrino): high-order currents (HOC), finite-nucleon-size (FNS) corrections, and radial short-range correlations (SRC).

2. Wavefunctions of the initial and final nuclei:

- (R)QRPA (Tübingen, Jyuaskyla, North Carolina)
- ISM (Strasbourg-Madrid, MSU, etc)
- IBM-2 (Yale)
- PHFB: 1DAMP+(PP+QQ) (Lucknow-UNAM)
- NREDF: GCM+PN1DAMP+D1S (GSI-Madrid)

The closure approximation is usually adopted.

\rightarrow The results are different by a factor of 2 – 3.
Purpose of this work

The purpose of this work is to provide a systematic calculation of the NMEs for $0\nu\beta\beta$ based on the beyond mean-field covariant density functional theory (CDFT).

Key points in the present study

- The full relativistic transition operator (\checkmark)
- The tensor terms. (\checkmark) ($\sim 5\%$ error), J. Barea and F. Iachello, PRC79, 044301 (2009)
- The high-order-current (HOC) terms. (\checkmark) ($\sim 25\%$ reduction), F. Simkovic et al., PRC60, 055502 (1999)
- The finite-nucleon-size (FNS) corrections. (\checkmark) ($\sim 20\%$ reduction)
- The short-range-correlation (SRC) effect. (\times) ($\sim 5\%$ reduction once the FNS has been taken into account), F. Simkovic et al., PRC79, 055501 (2009)
- Without the closure approximation. (\times) (5% – 10% error)
- The effects of static and dynamical quadrupole deformation and particle-number conservation. (\checkmark), change significantly the NMEs.

$$\Rightarrow$$ The error/uncertainty in the NMEs: within 15%
Outline

1. Introduction: status of studying $0\nu\beta\beta$ decay

3. Results and discussions
 - Structural properties of $0\nu\beta\beta$ decay candidate nuclei
 - Nuclear matrix elements for $0\nu\beta\beta$ decay

4. Summary and outlook
The Covariant DFT is developed based on the concept of DFT and Walecka model, in which the nucleons interact effectively via the exchange of effective mesons or contact coupling.

- **Finite-range meson-exchange**
 - scalar and vector couplings (saturation)
 - nonlinear couplings (compressibility) or Density-Dependent coupling
 - derivatives (finite range)
 - isovector channel (isospin characters)
 - electromagnetic interaction

- **Zero-range point-coupling**
 - α_s
 - α_v
 - α_{TV}

Boguta & Bodmer, NPA 292, 413 (1977)
Brockmann & Toki, PRL 68, 3408 (1992)
Manakos & Mannel, ZPA 334, 481 (1989)
Serot, PIB 86, 146 (1979)
Covariant density functional theory: point-coupling

Lagrangian density and EDF in the RMF–PC model

\[
\mathcal{L} = \mathcal{L}^{\text{free}} + \mathcal{L}^{4f} + \mathcal{L}^{\text{hot}} + \mathcal{L}^{\text{der}} + \mathcal{L}^{\text{em}}
\]

\[
= \bar{\psi} (i \gamma \mu \partial^\mu - m) \psi
\]

\[
- \frac{1}{2} \alpha S (\bar{\psi} \gamma \mu \psi) \partial^\mu - \frac{1}{2} \alpha V (\bar{\psi} \gamma \mu \psi) (\bar{\psi} \gamma^\mu \psi)
\]

\[
- \frac{1}{2} \alpha T S (\bar{\psi} \gamma \mu \psi) (\bar{\psi} \gamma^\mu \psi) - \frac{1}{2} \alpha T V (\bar{\psi} \gamma \mu \psi) (\bar{\psi} \gamma^\mu \psi)
\]

\[
- \frac{1}{2} \frac{1}{2} \beta S \bar{\psi} (\bar{\psi} \gamma \mu \psi) \partial^\mu - \frac{1}{4} \gamma S (\bar{\psi} \gamma \mu \psi) \partial^\mu - \frac{1}{4} \gamma V [(\bar{\psi} \gamma \mu \psi) (\bar{\psi} \gamma^\mu \psi)]
\]

EDF for ph-channel:

\[
E_{\text{RMF}} [\rho_s, \nabla \rho_s, j_{\mu}^p, \nabla j_{\mu}^p]
\]

\[
= \text{Tr} [(\alpha \cdot p + \beta m) \rho_s] + \int \mathcal{d}r \left(\frac{\alpha}{2} \rho_s^2 + \frac{\beta}{3} \rho_s^3 + \frac{\gamma}{4} \rho_s^4 + \frac{\delta}{2} \rho_s \nabla \rho_s \rho_s^4 \right)
\]

\[
+ \frac{\alpha}{2} j_{\mu}^p j_{\mu}^p + \frac{\gamma}{4} (j_{\mu}^p j_{\mu}^p)^2 + \frac{\delta}{2} j_{\mu}^p \Delta j_{\mu}^p
\]

\[
+ \frac{\alpha T V}{4} j_{\mu}^p (j T V)_{\mu} + \frac{\delta T V}{4} j_{\mu}^p \Delta (j T V)_{\mu}
\]

\[
+ \frac{1}{4} F_{\mu \nu} F^{\mu \nu} - F_{\mu \nu} \delta_{\mu 0} A_{\nu} + e \frac{1 - \tau_3}{2} j_{\mu} A_{\mu}
\]

EDF for pp-channel:

\[
E_{\text{pair}} = \frac{V_{pp}}{4} \int \mathcal{d}r \kappa_{\bar{i}}^*(r) \kappa_{\bar{i}} (r)
\]

Parameters: coupling strengths $\alpha, \beta, \gamma, \delta$ are fitted to the properties of some atomic nuclei (and nuclear matter).
Symmetry breaking in density functional theory

Deformed solutions in DFT calc.

Wave function \[| q \rangle = \sum_{JK} C_{JK}^J | JK \rangle \]

Superfluidity (BCS) state:

\[| \text{BCS} \rangle = \prod_k \left[u_k + v_k a_k^+ a_k^+ \right] | 0 \rangle = \sum_{N,Z} C_{N,Z} | N, Z \rangle \]

Summary and outlook

\[W_{\text{F}}: \]
e-e nuclei: quasi-particle vacuum
Quantum fluctuation in nuclear shapes

Quantify the mixing of different shapes with generator coordinate method (GCM)

Wavefunction: \[| \text{GCM} \rangle = \sum_q f(q) | q \rangle \]

\[g(q) = \sum_q N^{1/2}(q, q') f(q') \]

HWG equation

D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953)
Implementation of projections and GCM: MR-CDFT

\[|JNZ; \alpha \rangle = \sum_{q,K} f^{JK}_\alpha (q) \hat{P}^J_{MK} \hat{P}^N \hat{P}^Z |q\rangle, \]

- \(\alpha \) distinguishes the states with the same angular momentum \(J \)
- \(|q\rangle\) is a set of Slater determinants from the constrained CDFT calc.
- \(P^J \) and \(P^N \) are projection operators onto \(J \) and \(N \).
- \(K=0 \) if axial symm. is assumed.

Variation of energy with respect to the weight function \(f(q) \) leads to the Hill-Wheeler-Griffin (HWG) integral equation:

\[\sum_{K',q'} \left[\mathcal{H}_{KK'}^J (q, q') - E_{\alpha}^J \mathcal{N}_{KK'}^J (q, q') \right] f^{JK'}_\alpha (q') = 0, \]

Definition of kernels:

\[\mathcal{O}^{J}_{KK'} (q; q') = \frac{2J + 1}{8\pi^2} \int d\Omega D^{J*}_{KK'} (\Omega) \langle q | \hat{O} \hat{R} (\Omega) \hat{P}^N \hat{P}^Z | q' \rangle. \]
MR-CDFT calculation of the NMEs

In our MR-CDFT calculation, the NME is calculated as follows

\[
M^{0\nu} = \frac{4\pi R}{g_A^2(0)} \int d^3x_1 \int d^3x_2 \int \frac{d^3q}{(2\pi)^3} \frac{e^{iq \cdot (x_1 - x_2)}}{q(q + E_d)} \times \langle 0^+_F | \mathcal{J}_{L,\mu}^+(x_1) \mathcal{J}_{L}^{\mu+}(x_2) | 0^+_I \rangle,
\]

where \(\mathcal{J}_{L,\mu}(x) = \bar{\psi}_p(x) \tau^- \left[g_V(q^2) \gamma_\mu - g_A(q^2) \gamma_\mu \gamma_5 - ig_M(q^2) \frac{\sigma_{\mu\nu}}{2m_p} q^\nu + g_P(q^2) q_\mu \gamma_5 \right] \psi_\rho(x) \).

Results and discussions

Structural properties of 0\nuββ decay candidate nuclei

Nuclear matrix elements for 0\nuββ decay

Summary and outlook

- The wave functions for the ground states are from the MR-CDFT calculations.

Framework: multireference covariant density functional theory

Introduction: status of studying 0\nuββ decay
Outline

1. Introduction: status of studying $0\nu\beta\beta$ decay

3. Results and discussions
 - Structural properties of $0\nu\beta\beta$ decay candidate nuclei
 - Nuclear matrix elements for $0\nu\beta\beta$ decay

4. Summary and outlook
Structural properties of $0\nu\beta\beta$ decay candidate nuclei

- Exp. data are reproduced reasonable well for most candidate nuclei, except for 96Zr, which is dominated by p-h ex. at low E.
- The Q value of DBD is improved after taking into account the DCE.
Structural properties of $0\nu\beta\beta$ decay candidate nuclei

Framework: multi-reference covariant density functional theory

Results and discussions

Structural properties of $0\nu\beta\beta$ decay candidate nuclei

Nuclear matrix elements for $0\nu\beta\beta$ decay

Summary and outlook
Introduction: status of studying $0\nu\beta\beta$ decay

Framework: multi-reference covariant density functional theory

Results and discussions

Structural properties of $0\nu\beta\beta$ decay candidate nuclei

Nuclear matrix elements for $0\nu\beta\beta$ decay

Summary and outlook
Nuclear matrix elements for $0\nu\beta\beta$ decay: spherical case

Normalized NME $\tilde{M}^{0\nu}(\beta_I, \beta_F)$ for the $0\nu\beta\beta$-decay:

$$\tilde{M}^{0\nu}(\beta_I, \beta_F) = N_F N_I \langle \beta_F | \hat{O}^{0\nu} \hat{P}^{J=0} \hat{P}^N \hat{P}^Z | \beta_I \rangle,$$

with $N_a^{-2} = \langle \beta_a | \hat{P}^{J=0} \hat{P}^N \hat{P}^Z | \beta_a \rangle$ for $a = I, F$.

Table: The normalized NME $\tilde{M}^{0\nu}$ at $\beta_I = \beta_F = 0$ using both the relativistic and non-relativistic transition operators. The ratio R_{AA} of the AA term to the total NME $R_{AA} \equiv \tilde{M}^{0\nu}_{AA}/\tilde{M}^{0\nu}$, the relativistic effect $\Delta_{\text{Rel.}} \equiv (\tilde{M}^{0\nu} - \tilde{M}^{0\nu}_{\text{NR}}) / \tilde{M}^{0\nu}$ and the ratio R_T of the tensor part to the total NME $R_T \equiv \tilde{M}^{0\nu}_{\text{NR},T}/\tilde{M}^{0\nu}_{\text{NR}}$ are also presented.

<table>
<thead>
<tr>
<th>Sph+PNP</th>
<th>$\tilde{M}^{0\nu}$</th>
<th>R_{AA}</th>
<th>$\tilde{M}^{0\nu}_{\text{NR}}$</th>
<th>$\Delta_{\text{Rel.}}$</th>
<th>R_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>48Ca \rightarrow^{48}Ti</td>
<td>3.66</td>
<td>81%</td>
<td>3.74</td>
<td>-2.1%</td>
<td>-2.4%</td>
</tr>
<tr>
<td>76Ge \rightarrow^{76}Se</td>
<td>7.59</td>
<td>94%</td>
<td>7.71</td>
<td>-1.6%</td>
<td>3.5%</td>
</tr>
<tr>
<td>82Se \rightarrow^{82}Kr</td>
<td>7.58</td>
<td>93%</td>
<td>7.68</td>
<td>-1.4%</td>
<td>2.9%</td>
</tr>
<tr>
<td>96Zr \rightarrow^{96}Mo</td>
<td>5.64</td>
<td>95%</td>
<td>5.63</td>
<td>0.2%</td>
<td>3.6%</td>
</tr>
<tr>
<td>100Mo \rightarrow^{100}Ru</td>
<td>10.92</td>
<td>95%</td>
<td>10.91</td>
<td>0.1%</td>
<td>3.5%</td>
</tr>
<tr>
<td>116Cd \rightarrow^{116}Sn</td>
<td>6.18</td>
<td>94%</td>
<td>6.13</td>
<td>0.7%</td>
<td>1.9%</td>
</tr>
<tr>
<td>124Sn \rightarrow^{124}Te</td>
<td>6.66</td>
<td>94%</td>
<td>6.78</td>
<td>-1.8%</td>
<td>4.9%</td>
</tr>
<tr>
<td>130Te \rightarrow^{130}Xe</td>
<td>9.50</td>
<td>94%</td>
<td>9.64</td>
<td>-1.4%</td>
<td>4.3%</td>
</tr>
<tr>
<td>136Xe \rightarrow^{136}Ba</td>
<td>6.59</td>
<td>94%</td>
<td>6.70</td>
<td>-1.7%</td>
<td>4.1%</td>
</tr>
<tr>
<td>150Nd \rightarrow^{150}Sm</td>
<td>13.25</td>
<td>95%</td>
<td>13.08</td>
<td>1.3%</td>
<td>2.5%</td>
</tr>
</tbody>
</table>
Nuclear matrix elements for $0\nu\beta\beta$ decay: shape mixing

- Large shape fluctuation in light or mediate heavy nuclei.
- The DBD is favored if mother and daughter nuclei have the same shape.
- Deformation hinders the DBD for most cases.
Introduction:

status of studying $0\nu\beta\beta$ decay

Framework:

multi-reference covariant density functional theory

Results and discussions

Structural properties of $0\nu\beta\beta$ decay candidate nuclei

Nuclear matrix elements for $0\nu\beta\beta$ decay

Summary and outlook

Normalized NME:

$\tilde{M}^{0\nu}(\beta_I, \beta_F) = N_F N_I \langle \beta_F | \hat{O}^{0\nu} \hat{P}^{J=0} \hat{P}^{N_I} \hat{P}^{Z_I} | \beta_I \rangle$,

with $N_a^{-2} = \langle \beta_a | \hat{P}^{J=0} \hat{P}^{N_a} \hat{P}^{Z_a} | \beta_a \rangle$ for $a = I, F$

96Zr: overestimated collectivity of g.s.

150Nd: critical nucleus of phase trans.

Large discrepancy

48Ca to 156Nd

MR-DFT: Rodriguez et al. PRL (2010)

RQPRA: Faessler et al. JPG (2012)

PHFB: Rath et al. PRC (2010)

ISM: Menendez et al. NPA (2009)

IBM2: Barea et al. PRC (2009)

JMY, L. S. Song, K. Hagino, P. Ring, and J. Meng, to be submitted.
Nuclear matrix elements for $0\nu\beta\beta$ decay: eff. neutrino mass

Table: The upper limits of the effective neutrino mass $\langle m_{\beta\beta} \rangle$ (eV) based on the NMEs from the present MR-CDFT (PC-PK1) calculation, the lower limits of the half-life $T_{1/2}^{0\nu}(\times 10^{24} \text{ yr})$ for the $0\nu\beta\beta$-decay from most recent measurements and the phase-space factor $G_{0\nu}(\times 10^{-15} \text{ yr}^{-1})$ from Ref. Kotila and Iachello, PRC85 (2012).

<table>
<thead>
<tr>
<th></th>
<th>48 Ca</th>
<th>76 Ge</th>
<th>82 Se</th>
<th>100 Mo</th>
<th>130 Te</th>
<th>136 Xe</th>
<th>150 Nd</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{1/2}^{0\nu}$</td>
<td>0.058</td>
<td>30</td>
<td>0.36</td>
<td>1.1</td>
<td>2.8</td>
<td>34</td>
<td>0.018</td>
</tr>
<tr>
<td>$G_{0\nu}$</td>
<td>24.81</td>
<td>2.363</td>
<td>10.16</td>
<td>15.92</td>
<td>14.22</td>
<td>14.58</td>
<td>60.03</td>
</tr>
<tr>
<td>$\langle m_{\beta\beta} \rangle$</td>
<td>2.92</td>
<td>0.20</td>
<td>1.00</td>
<td>0.38</td>
<td>0.33</td>
<td>0.11</td>
<td>1.76</td>
</tr>
</tbody>
</table>

[Graph showing the relationship between nuclear matrix elements and effective neutrino mass, with data points from various experiments and calculations.]

Summary and outlook
Outline

1. Introduction: status of studying $0\nu\beta\beta$ decay

3. Results and discussions
 - Structural properties of $0\nu\beta\beta$ decay candidate nuclei
 - Nuclear matrix elements for $0\nu\beta\beta$ decay

4. Summary and outlook
Summary

- A systematic calculation of the NMEs for the $0\nu\beta\beta$ by using the wave functions from the beyond relativistic mean-field calculation.
- Good agreement with the properties of 0^+_1 and 2^+_1 states for the $0\nu\beta\beta$ candidate nuclei.
- The relativistic effect, contributions of tensor terms and HOC terms and the effects of PNP and shape mixing have been discussed.
- The smallest upper limit on $\langle m_{\beta\beta} \rangle \leq 0.11$ eV.

Outlook

- Wavefunctions: Comparison of different model wave functions, inclusion of other degrees of freedom, etc.
- Operator: heavy-neutrino-exchange, SRC, etc.
- Other processes: $2\nu\beta\beta$, ν-nucleus scattering, etc.
Summary

- A systematic calculation of the NMEs for the $0\nu\beta\beta$ by using the wave functions from the beyond relativistic mean-field calculation.
- Good agreement with the properties of 0^+_1 and 2^+_1 states for the $0\nu\beta\beta$ candidate nuclei.
- The relativistic effect, contributions of tensor terms and HOC terms and the effects of PNP and shape mixing have been discussed.
- The smallest upper limit on $\langle m_{\beta\beta} \rangle \leq 0.11$ eV.

Outlook

- Wavefunctions: Comparison of different model wave functions, inclusion of other degrees of freedom, etc.
- Operator: heavy-neutrino-exchange, SRC, etc.
- Other processes: $2\nu\beta\beta$, ν-nucleus scattering, etc.

Thanks for your attention!